
as well. for which less topological informa- 
tion is currently available; including such 
important exa~nples as genetic or signaling 
networks in biological systems. \lTe often do 
not thinli of biological systems as open or 
growing. because their features are genetical- 
ly coded. However. possible scale-free fea- 
tures of genetic and signaling networks could 
reflect the networks' evolutiona~y history. 
dominated by growth and aggregation of dif- 
ferent constituents. leading from simple mol- 
ecules to complex organisms. \lTith the fast 
advances being made in mapping out genetic 
networks, answers to these questions might 
not be too far away. Similar mechanisms 
could explain the origin of the social and 
economic disparities go\ esning competitive 
systems. because the scale-free inhomogene- 
ities are the inevitable consequence of self- 
organization due to the local decisions made 
by the indk idual vertices. based on informa- 
tion that is biased ton-ard the more visible 
(richer) vertices. irespecti\ e of the nature 
and origin of this visibility. 
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Veined peridotite xenoliths from the mantle beneath the giant Ladolam gold 
deposit on Lihir Island, Papua New Guinea, are 2 to 800 times more enriched 
in copper, gold, platinum, and palladium than surrounding depleted arc mantle. 
Gold ores have osmium isotope compositions similar to those of the underlying 
subduction-modified mantle peridotite source region, indicating that the pri- 
mary origin of the metals was the mantle. Because the mantle is relatively 
depleted in gold, copper, and palladium, tectonic processes that enhance the 
advective transport and concentration of these fluid soluble metals may be a 
prerequisite for generating porphyry-epithermal copper-gold deposits. 

The tectonic relationship behveen subduction- 
related magnatism at convergent margins and 
p o ~ p h y ~ y  copper-gold (CLI-Au) ore fo~nlation 
has long been recog~ized (1). However, the 
physical and chemical processes that go\ ern 
Cu-Au ~netallogeny and the ultimate source(s) 
of the nletals in these ore deposits are poorly 
understood. The rhenium-osmium1 (Re-0s) iso- 
topic system (based on the P- decay of '"Re 
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convergent margins because both elements 
have geochemical properties similar to metals 
that occur in porphysy ore deposits (2, 3). Be- 
cause Re is highly concentsated in crustal roclcs 
and 0 s  is concenbated in the nlantle (4, j), this 
isotopic system is particularly usefill for quan- 
tifying the flux of ore elements in island arc 
settings where the hvo principal resenoirs for 
~netals are subducted cl-ust and mantle wedge 
pe~idotite. 

0 s  isotope studies in subduction zones are 
currentlv li~nited because of the raritv of 
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suprasubduction xenolith locality, the Tubaf 
seamount in the Lihir island -group of the 
Tabar-Lihir-Tanga-Feni island arc in Papua 
New Guinea (Fig. 1). This xenolith locality is 
important for the following reasons: (i) it 
contains samples that represent a complete 
section of oceanic lithosphere at an intraoce- 
anic convergent margin, (ii) it is located ad- 
jacent to one of the world's largest and 
youngest volcano-hosted Au deposits; and 
(iii) it contains metasoinatized mantle perido- 
tite xenoliths with Au-enriched vein minerals 
that c~ystallized in the ~nantle fsoin oxidizing. 
alkali- and sulfi~r-rich hydrous fluids. 

During the oceanographic investigation of 
subnlarine hydrothermal systems in Papua 
New Guinea (8), a submarine cinder cone 
(Tubaf volcano. 1280 in below sea level: 3" 
15.25' S. 152" 32.50' E j  was discovered 14 
k n ~  southwest of the giant Ladolam gold mine 
(>40 million oz contained Au) on Lihir Is- 
land. Dredge and video-grab sampling of the 
1-km-diameter volcanic cone returned 130 
ultramafic, mafic, and sedimenta~y xenoliths. 
The study of these sa~nples has provided an 
unprecedented view of the source region of 
an island arc magmatic system with a propen- 
sity to produce giant porphyry-epithennal ore 
deposits. The xenolith assemblage includes 
spinel lherzolite. harzburgite. websterite, or- 
thopyroxenite. clinopyroxcr~ite, syenite, ser- 
pentmite. gabb~o. hornblende gabbro. dia- 
base, basalt, pelag~c deep-sea sediment. and 
shallow-water volcaniclastic sediment as well 
as coralline and coralgal limestone. These 
lithologies represent a cross section of the su- 
prasubduction assenlblage and can be reassem- 
bled into an "ophiolite-type" model of oceanic 
lithosphere (Fig. 1) (9). 
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Most of the Tubaf ultrarnafic xenoliths are 
Cr-spinel harzburgites and were derived from 
depths ranging from 17 to 70 krn (1 0). The 
harzburgites record a two-stage history of 
chemical depletion and enrichment (11): 
stage I, formation of a chemically depleted 
residue after the removal of 15 to 20% partial 
melt in a midocean ridge (MOR) environ- 
ment; stage 11, chemical enrichment associat- 
ed with an oxidative, hydrous fluid metaso- 
matism event. 

Platinum group element (Pd, Pt, Ir, Ru, 
Rh, and Os), Au, Ni, Re, and Cu abundances 
were determined on six ultramafic rocks (five 
harzburgites and one orthopyroxenite) that 
exhibit a variety of styles and intensities of 
metasomatism (Table 1) (12, 13). The Ru, 
Rh, Ir, and Ni concentrations in metasoma- 
tized harzburgites are similar to those of 
an unrnetasomatized harzburgite (sample 
136063 in Table 1). These elements are there- 
fore interpreted to be relatively insoluble in 
hydrous fluids. In contrast, enrichments of 
noble metals in the metasomatized ultramafic 
rocks are observed with Pd > Au > Pt > 
Re > Cu > 0 s  and variations in abundance 
ranging from 2 to 800 times that of unmeta- 
somatized harzburgite (Fig. 2). We interpret 
this order as an indication of the relative 
metal solubilities in hydrous fluids under 
mantle conditions (14). Replicate analyses of 
the orthopyroxenite vein (sample 136037) 
suggest that 0 s  is heterogeneously distributed 
within the sample and is probably resident 
within the mackinawite (Fe-Ni sulfide) pre- 
cipitate (12, 15). The alkalic arc basalt and 
cumulate xenoliths (phlogopite clinopyroxen- 
ite and syenite) have ReIOs ratios between 
0.22 and 0.81, higher than those of the harz- 

burgites (ReIOs < 0.1). for crust-mantle separation of 120 million 
Previous studies (9) have demonstrated years ago (Ma) (17) and indicates that the 

that the gabbro xenolith represents plutonic 
oceanic crust generated in a MOR environ- 
ment during stage I partial melting. The Re 
content of 658 parts per trillion @pt) and the 
ReIOs value of 990 for the gabbro fall within 
the range of MOR basalt values (16). The 
highly radiogenic 0 s  isotopic composition of 
the gabbro (70s = 1560) yields a model age 

subarc basement of the New Ireland basin is 
Cretaceous oceanic crust (Fig. 1). The simi- 
larity in age of the subarc basement and the 
partially subducted Ontong Java Plateau (18) 
suggests that the Cretaceous Pacific Plate was 
subducting beneath its own detached frag- 
ment (Fig. 1). 

The 0 s  isotopic data for the ultramafic 

Fig. 1. Location map of the 
Tubaf volcano xenolith lo- 
cality and petrological mod- 
el of the New lreland ba- 
sin lithosphere constructed I 
from seismic data (70) and 
by arranging xenolith as- 
semblages according to  
their position in ophiolites 
(9). Westward subduction 
of the Pacific Plate into 
the Kilinailau trench since 
the Oligocene generated 
the New Ireland island arc, 
which shed 4 km of sedi- 
ments into the New Ire- 
land basin fore-arc depo- 
center. Collision of the On- 
tong Java Plateau with the 
trench about 10 Ma caused 
subduction to cease, and 
postcollisional alkaline arc 
volcanism (Tabar-Lihir-Tanga- 
Feni arc) in the New Ire- 
land basin began about 3.5 - 
Ma. A Re-0s crust-mantle .. --. 
separation age of 120 Ma -. 
for the New Ireland basin is .. 
similar to crustal ages for 
the Ontong Java Plateau (78) and indicates that Cretaceous Pacific Plate was subducting beneath its 
own detached fragment before the collision of the Ontong Java Plateau with the Kilinailau trench. Note 
that there is a break in scale for the mantle portion of the stratigraphic column. 

Table 1. Bulk rock metal contents and 0s-0 isotopic systematics of rock ICP-MS analysis. Cu and Ni were determined by quantitative ICP-MS. All 
samples from the Tubaf volcano xenolith locality and the Ladolam gold .abundances are in ppb unless otherwise indicated. Dashes indicate no anal- 
deposit from the Lihir Island group, Papua New Guinea. Noble metal contents ysis. Geochemical data for primitive mantle are from (33). Oxygen isotope 
are isotope dilution (Pd, Pt, Ir, Ru, Re, and 0s) and external calibration (Rh, Au) ratios are relative to SMOW. 70s is defined in (17). 

PP"' 
Rock type Sample 1870s/1880s 70s 8180 

Pd Pt Ir Ru Rh Au Cu Ni 0s Re ( 2 4  (%.I (%.I 

Wtramafic rocks 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Harzburgite 
Orthopyroxenite 

Alkalic arc rocks 
Phlogopite 

clinopyroxenite 
Basalt 
Syenite 

Oceanic crust 
Gabbro 

Cold ore samples 
Lihir ore 
Lihir ore 
Lihir ore 
Lihir ore 
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rocks (Table 1) (19) yield near-chondritic 
(20) values for types 1 and 2 [see (12)] 
harzburgites (yOs = -4.3 to +5.0), identical 
to those observed in samples from the Japan 
and Cascade arcs (70s = -5 to +5) (6). The 
more radiogenic values for the type 3 or- 
thopyroxenite vein assemblage (yOs = +40) 
requires a radiogenic slab-derived 0 s  compo- 
nent. The host alkalic arc lava (shoshonite) 
and two cumulate xenoliths (syenite and phlog- 
opite clinopyroxenite) also have relatively 
radiogenic 0 s  values (yOs = + 12 to +32). 
Data for Lihir ore sample 101373 (21) yield- 
ed an internal isochron producing a Re-0s 
age for gold mineralization of 690 + 26 
thousand years ago (Ka) (70s = +62), con- 
sistent with K-Ar ages for the deposit (22). 

The narrow range in yOs (+32 to +62) for 
the orthopyroxenite vein, the alkalic arc lava, 
and the volcanic-hosted gold ores in Fig. 3 
infers a common origin for the contained 0s.  
However, the existence of subarc mantle 
veins with yOs greater than +40 (7) is sug- 
gested by the fact that the Lihir ores are more 
radiogenic than the orthopyroxenite vein. 

To assess the degree of mass exchange 
between the slab and the mantle wedge, par- 
ticularly the proportion of radiogenic 0 s  de- 
rived from the slab, we analyzed oxygen 
isotopes (23). Oxygen isotope signatures in 
mantle rocks are a more robust measure of 
mass exchange between mantle and slab res- 
ervoirs during subduction, because, unlike 
other isotopic tracers (Sr, Nd), oxygen is an 

Fig. 2 Noble metal contents 1000 00 - - - 

of veined mantle (sample 5 13W61 

0 136069 
136037) and primitive man- P 136075 

tle (33) relative to subarc 100.00 - A ,3m90 - - 

mantle (fresh harzburgite +vem& rnanue 

sample 136063). Elements g -Pnrnlt<ve manse 

are arranged in order of ,, ,, . - - - -Alkalr arclava 

increasing log-normalized 
average of the metasoma- 
tized Tubaf xenoliths. Sam- 2 , o o g  
ples with downward point- ;1 
ing arrows have abundance5 
below the marked detection 
limits. Ni, Ir, and Rh are es- 
sentially insoluble in the hy- 
drous fluids, whereas the 
solubility of the other met- NI c ~h RU 0.1 cu R. R AU ~d 

als increases from 0s  to Pd. 
Subduction-derived hydrous fluids have increased the Os, Cu, Pt, Au, and Pd values of metasomatized mantle 
to amounts that equal or exceed those of primitive mantle. Partial melting of these metasomatic veins 
produces metallogenically fertile alkalic arc lava enriched in Pd, Au, Re, and Cu. 

Fig. 3. Binary curves for the 
mixing of 0 s  and 0 be runrrn 

6 8  25% tween end-member reser- I 

voirs consisting of depleted 6 6 ' 
I oceanic subarc mantle and 6 4  , 

subduction-derived fluids. 62 
The 0s  and 0 isotope com- 
position of the depleted P 60  1 
mantle end member is rep a 5 8 1 # 

i T W  2 resented by the unmetaso- s6  , 
matized harzburgite sample 
136063 (6% = 49%0 and 1 : 
'=0s/'870s = 0.1217), 
whereas the slab fluid end 
member is assumed to be 50 

derived from Cretaceous, -- 

seawater-altered oceanic 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 021 

crust of the Pacific Plate lsrOs/'MOs 
f6'80 = 12% and '870s/ 
' ~ 0 s  = 2.11 7). ~ecause isotopic fractionation is negligible at mantle temperatures, and the oxygen content 
of the mantle and slab fluid reservoirs are essentially the same (24), the contribution of slab-derived oxygen 
to the metasomatized peridotite varies from 8 to 13% for the 2 (grain boundary diffusion-domin%ed) 
assemblage to 23% for the type 3 (advectiondominated) assemblage. The Lihir peridotite xenolith data can 
also be modeled with a series of OS,,,/O~,~ ,,uid ratios (curves of 30:l and 11:l). Binary component 
mixing curves with an 1 1 : 1 ratio of Os,,,/Os,, best fit orthopyroxenite sample 136037, indicating 
that about 9% of the 0s  in the sam~le originated from a slab end member. The alkalic arc mamas l~lutonic 
(P) and volcanic (V)] were generat& by feferential partial melting of veined mantle assembGges. bereas 
6180 remains unchangedduring partial melting, the observed decrease in 1870s/'880s infers that up to-5% 
of type 1 mantle Os was assimiked before eruption. Cold ores from the volcano-hosted Ladolam mine have 
initial 1870s/1880s ratios that overlap values for the alkalic arc lava and its parental type 3 metasomatized 
mantle. 

abundant constituent of each reservoir (24). 
Mantle xenoliths typically have a relatively 
narrow range in 6180 [5.0 + 0.5 per mil (%,)I 
(25), whereas subducted crustal material is 
enriched in 1 8 0  during the process of low- 
temperature fluid-rock interaction (5.7 to 
12%0) (26). Pressure- and temperature-in- 
duced dehydration of subducted crustal ma- 
terial will cause a flux of "0-enriched hy- 
drous fluid to penetrate and interact with the 
overlying mantle wedge peridotite (27). 

0 -0s  mixing models (28) indicate that the 
Lihir data can be reproduced by mixing 9% 
of a subduction component (95% oceanic 
crust and 5% oceanic sediment) with depleted 
mantle. A positive correlation between 6180 
and '870s/'880s in the peridotite xenolith 
data (Fig. 3) suggests that there is a system- 
atic variation between the type of metasoma- 
tism (fluid advection versus grain-boundary 
diffusion) and the amount of contamination 
of the slab component in the sample. The type 
1 harzburgite is not metasomatized and has 
an isotopic composition similar to depleted 
mantle (25). In contrast, the orthopyroxenite 
vein sample (type 3) is enriched in 1 8 0  and 
'870s, consistent with its formation by pre- 
cipitation of metasomatic minerals from a 
subduction-derived fluid. A best-fit model 
curve linking the orthopyroxenite vein and 
the unmetasomatized harzburgite is obtained 
by using an Osm,,,,JOsslab mixing ratio 
of 1 1 : 1. The type 2 harzburgites have elevat- 
ed 6180 and yOs compared with depleted 
mantle, but the two-component models re- 
quire Osm,,JOsslab .", mixing ratios around 
30: 1. These high ratios suggest that yOs and 
6180 are decoupled during diffusion of meta- 
somatic fluids along grain boundaries. This 
may be due to the higher abundance of man- 
tle 0 s  contained within intergranular sulfides 
(15). Overall, the peridotite data imply that 
high yOs and 6180 values are linked to meta- 
somatic processes involving high fluid-to- 
mantle ratios. 

The 0s-0  isotopic data for the plutonic 
(phlogopite clinopyroxenite and syenite) and 
volcanic (shoshonite lava host) samples form 
a linear array with a range in '870s/'880s 
from 0.1424 to 0.1672 and with 6180 values 
equivalent to the orthopyroxenite vein 
(-6.5%) (Fig. 2). This data array may be 
explained by the generation of the plutonic 
and volcanic samples during partial mdting 
of the metasomatized, veined mantle assem- 
blages. These vein assemblages presumably 
have a lower solidus temperature than the 
unmetasomatized harzburgitic wall rock. The 
range in '870s/'880s values may be caused 
by assimilation of mantle 0 s  by the partial 
melt products in a mantle magma chamber. 
The variation in the yOs values between vol- 
canic (+3l)  and plutonic (+ 12 to + 15) rocks 
can be attributed to the residence time of the 
melt products in that chamber. The alkalic arc 
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lava presumably had a relati~ely short mantle 
residence time because its yOs is nearly iden- 
tical to the type 3 metasoinatic vein (yOs = 

+40). If the syenite and phlogopite clinopy- 
roxenite magmas had a longer residence time, 
there would be an increased poteiltial for 
these magmas to dissolve low yOs sulfides in 
the harzburgite mall rock. Assimilation of 
<5% of mantle 0 s  can drive a "vein melt" 
magma from $40 to values as low as + 12 to 
+ 15 (29). Preferential partial melting of the 
veined mantle regions f~lsther fsactio~lated the 
noble metals and produced an alkalic arc 
magma enriched in chalcophile elements 
(Au; Pd, Re, and Cu) (Fig. 2). Evidently Ni, 
Ir, Rh, Ru, Os, and Pt behave compatibly 
during the partial melting process. probably 
as a result of being partitioned into a mag- 
matic sulfide phase. 

Gold ores from the Ladolam deposit have 
0 s  isotope compositions similar to the sub- 
duction-modified mantle wedge peridotite 
that ullderlies it. The contribution of crustal 
0 s  to the mantle wedge is nominal (<lo%), 
and we infer that the mantle is the primaq 
source of ore metals in island arc settings. In 
a metallogellic context, the essential role of 
subduction is to produce a flux of oxidizing 
fluids capable of redistributing soluble metals 
within the mantle wedge under subsolidus 
conditions and concentrating them in sulfide- 
bearing metasomatic assemblages. Preferen- 
tial partial melting of these assemblages fa- 
vors the generation of arc magmas with ele- 
vated Au, Pd; and Cu contents. Because the 
subarc mantle is relatively depleted in Au, 
Cu, and Pd, processes that enhance the ad- 
vective transport and conceiltration of fluid- 
soluble metals (Au, Cu, Pd, and 0s )  may be 
a prerequisite for generating of porphyry- 
epithesmal Cu-Au deposits. We suggest that 
accretionary tectonic processes that lead to 
subduction cessation, such as occurred after 
the collision of the Ontong Java Plateau with 
the Kilinailau trench (Fig. 1); produce abnor- 
mally high fluid-to-mantle ratios because 
slab-derived fluids are effectively channeled 
though a vertical column of mantle wedge 
due to the shutdown of coupled slab subduc- 
tion and mantle convection. 
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Continuous Deformation Versus 
Faulting Through the 

Continental Lithosphere of 
New Zealand 
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Thomas V. M~Ev i l l y ,~  David Okaya,lo Martha Kane S a ~ a g e , ~  

Tim Stern,' Francis T. Wu7 

Seismic anisotropy and P-wave delays in New Zealand imply widespread de- 
formation in the underlying mantle, not slip on a narrow fault zone, which is 
characteristic of plate boundaries in oceanic regions. Large magnitudes of 
shear-wave splitting and orientations of fast polarization parallel to the Alpine 
fault show that pervasive simple shear of the mantle lithosphere has accom- 
modated the cumulative strike-slip plate motion. Variations in P-wave residuals 
across the Southern Alps rule out underthrusting of one slab of mantle litho- 
sphere beneath another but permit continuous deformation of lithosphere 
shortened by about 100 kilometers since 6 to 7 million years ago. 

In   no st oceanic regions. plates of lithosphere 
move past one another along narrow boumda~ies 
(width <20 lun), and a single nlajor fault can 
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define h.ansfo~in and convergent boundaries; 
active defo~mation within continental regions; 
however, co i~mo~l ly  spans di~ne~lsioils of 11~11- 
dreds to thousands of lulometers. The much 
greater creep strength of olivine than of cnistal 
minerals makes oceanic lithosphere strong in 
the depth range where continental lithosphere 
appears to be weakest (1). LV11at then is the role 
of the mantle lithosphere beneath continents? Is 
it cut by faults, or narrow shear zones, that 
separate effectively ~ i g i d  bodies, as if plate 
tectonics occui~ed but was blurred by the easily 
de fo~~ned  overlying cmst (2, 3); or does the 
inailtle lithosphere deform coiltinuously over a 
wide area, behaving as a coiltiiluous inediuill 
(4, 5) (Fig. I)? New Zeala~id,offers tests of 
these possibilities. Since -45 million years ago 
(Ma). the Pacific and Australia~l ulates have slid 
\ ,, 
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