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pressed, it may play roles in other tissues. 
Mice lacking CD2AP were generated by 

replacing the exon encoding the first SRC ho­
mology 3 (SH3) domain of CD2AP with a 
neomycin-resistance gene (Fig. 1A) (2). Two 
independent homologous recombinant clones 
were injected into blastocysts to generate chi-
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in Mice Lacking CD2-Associated 

Protein 
Neng-Yao Sh ih , 1 * Jun L i , 1 * V l a d i m i r Karp i t sk i i , 1 Aneho Nguyen , 1 

Michael L Dus t i n , 1 Osami Kanagawa, 1 Je f f rey H. H ine r , 2 

And rey S. S h a w 1 ! 

CD2-associated protein (CD2AP) is an 80-kilodalton protein that is critical for 
stabilizing contacts between T cells and antigen-presenting cells. In CD2AP-
deficient mice, immune function was compromised, but the mice died at 6 to 
7 weeks of age from renal failure. In the kidney, CD2AP was expressed primarily 
in glomerular epithelial cells. Knockout mice exhibited defects in epithelial cell 
foot processes, accompanied by mesangial cell hyperplasia and extracellular 
matrix deposition. Supporting a role for CD2AP in the specialized cell junction 
known as the slit diaphragm, CD2AP associated with nephrin, the primary 
component of the slit diaphragm. 
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Fig. 1. (A) Strategy 
for homologous re- 
placement of the first 
SH3 domain of CDZAP 
with a neornycin-resis- 
tance Eanette (NEO). 
Restriction sites in the 
flanking introns around 
the targeted exon and 
the predicted sizes of 
the ku l t i ng  fragments 
from Ssp I dimmition are 
shown. ' (B)- Southem 
blot analysis of wild- 
type (WI -ry- 

of thymus khey, 
k , a n d * f r w n  
WT, HT, and KO mice. 
(D) SDS-PACE analysis 
of urinary protein in WT, 
HT. and KO mice. Twa 
mwoliters of urine from 
I-, 2-, and 3-week-old 
mice was malyced by 
SDS-PACE and Coanas- 
sie stained Genotypes 
were mfirmed by im 
munoblotting with anti- 
bodies to CD2AP (bot- 
tom). One micnqpn of 
bovine serum albumin 
wils run as a mntrd 

meric mice (3). Homozygous CD2AP knockout 
(KO) mice were generated from heterozygous 
mice with a normal frequency of 25%. The 
genotypes of the mice were confirmed by 
Southern (DNA) blotting analysis (Fig. 1B). 
Imrnunoblotting (4) demonstrated loss of 
CD2AP protein in KO animals and reduced 
levels of CD2AP in heterozygotes (Fig. 1C). 

At about 3 weeks of age, CD2AP KO 
animals began to exhibit substantial growth 
retardation, and most KO mice were dead by 
6 to 7,weeks of age. Postmortem examination 
of these mice revealed cardiac hypertrophy, 
splenic and thymic atrophy, and ascites. His- 
tological examination revealed evidence of 
severe kidney pathology (Fig. 2D) (5). This 
pathology correlated with proteinuria, elevat- 
ed blood urea nitrogen and creatinine concen- 
trations, and reduced serum albumin concen- 
trations, all signs of kidney dysfunction (6). 
Proteinuria was first detectable around 2 
weeks of age (Fig. 1D) (7). 

Microscopic examination revealed that the 
predominant kidney pathology involved the 
glomerulus, a specialized collection of capillary 
loops that constitutes the filtration apparatus of 
the kidney. The filtration banier consists of the 
fenestrated capillary endothelial cells, the glo- 
merular basement membrane (GBM), and the 
foot processes of the glomerular epithelial cells 
or podocytes (Fig. 3A). The spaces between the 
podocyte foot processes are regular (-35 m) 
and contain a specialized junctional structure 
called the slit diaphragm. 
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Fig. 2. Severe glomerular disease in CD2AP KO 
mice. Kidneys from wild-type (7-day-old) and 
from 7-, 14-, and 28-day-old KO animals were 
analyzed by hematoxylin and eosin staining. (A) 
Kidney section of a 7-day-old wild-type mouse. 
(B) Kidney section of a 7-day-old CDZAP KO 
mouse demonstrating glomerular hypercellular- 
ity. (C) Kidney section from a 14-day-old CDZAP 
KO mouse demonstrating glomerular hypercel- 
lularity and mesangial deposits. (D) Kidney sec- 
tion from a 28-day-old CDZAP KO mouse dem- 
onstrating glomerulosclerosis and kidney tubule 
dilatation. Scale bar, 50 p,m. 
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Compared with the glomeruli o f  age- increases in size and cellularity, suggesting a al l  glomeruli were affected, and many had 
matched wild-type mice (Fig. 2A), some o f  congenital defect (Fig. 2B). Kidney tubules evidence o f  mesangial deposits (Fig. 2C). B y  
the glomeruli in 1-week-old K O  mice showed appeared normal. A t  2 weeks o f  age, almost 4 weeks, glomeruli were sclerotic, with in- 

creased de~osits and distended ca~i l larv  

and in al l  capillary loops. However, at this 
stage, normal foot processes were also 
present (Fig. 3C). N o  anomalies o f  the G B M  

Fig. 3. Electron microscopic analysis of CDZAP KO glomeruli. (A) Ultrastructural analysis of a glomerular 
capillary wall from a 7-day-old wild-type mouse demonstrates the normal morphology of the glomer- 
ular filtration barrier with normal fenestrated endothelial cells (E), glomerular basement membrane 
(GBM), and normal podocyte foot processes (FP). (0 and C) ~nal~siiof-glomerular filtration barrier from 
a 7-dav-old KO mouse shows foot Drocess effacement [arrows in 1811, but normal endothelial cells and 
basement membranes. In (C), nomial foot processes (akows) adja&t to the damaged foot processes 
are shown. (D) Ultrastructural analysis from a 28-day-old mouse demonstrating massive extracellular 
matrix deposition (*) surrounding a mesangial cell Scale ban, 1 km. 

In+ r r l  s nnr I Cda4 (IV) 

. .. 
loops (Fig. 2D). There was never any evi- 
dence o f  inflammation. 

Electron microscopic (EM) examination 
o f  the kidneys indicated that the initial defect 
involved the podocytes (8). Kidneys from 
1-week-old animals showed loss o f  foot pro- 
cess integrity with obliteration o f  the spaces 

CD2AP S Y ~ P ~  merged CD2AP S Y ~ P ~  merged 

Fig. 4. lmmunofluorescence studies of wild-type and CDZAP KO glomeruli. (A) The expanded 
mesangium of mutant glomeruli contains laminin (Lam) a2, laminin y l ,  and perlecan (perl; shown 
in green) as well as other matrix proteins normally secreted by mesangial cells (see text). The 
composition of the CBM (arrows) is not affected by the mesangial defed; it contains the Laminin 
a5, p2, and y l  (shown) chains and the collagen (Col) a3, a 4  (shown), and a5(IV) chains. lntegrin 
a3 (Int a3; shown in red) appears properly localized juxtaposed to  the CBM on the basal surface 
of podocytes in mutant glomeruli. (0) In glomeruli, CDZAP (shown in red) is expressed exclusively 
by podocytes, as determined by double-labeling with synaptopodin (Synpo, shown in green), a 
podocyte marker. Scale bar, 50 Fm. 
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or endotherial cells were detected. Older an- 
imals showed worsening o f  the foot process 
damage. In addition, mesangial deposits be- 

myc Immunoblot 

VSV G lmmunoblot 
Fig. 5. Association of CD2AP with nephrin. A 
myc-tagged form of CDZAP was expressed either 
in HeLa cells alone (lane 1) or with a chimeric 
protein containing the nephrin cytoplasmic do- 
main (VSV Clnephrin, lane 4), a chimeric protein 
known to  interact with CDZAP (VSV CICDZ, lane 
3), or the VSV C protein lacking a cytoplasmic 
domain (VSV CTT-, lane 2). Cell lysates were 
immunoprecipitated with antibody to  VSV C and 
immunoblotted with antibody to myc (top). Im- 
munoblotting of whole-cell lysates with antibody 
to myc (middle) or with antibody t o  VSV C 
(bottom) was performed t o  demonstrate 
similar Levels of expression. 



gan to accumulate starting around 4 weeks of 
age (Fig. 3D). In some areas, these deposits 
were extensive, encroaching upon the lumen 
of the capillary loops. There were no suben-
dothelial or subepithelial deposits indicative 
of immune complex pathology. 

Deposits were composed of extracellular 
matrix normally secreted by mesangial cells. 
Deposits were strongly positive for fibronec-
tin, collagens a l and a2(IV), perlecan, and 
the laminin a l , a2, a5, (31, and 7I chains, 
indicating the presence of laminins-1, -2 and 
-10 (Fig. 4A) (6, 9). The GBM contained the 
usual laminin (laminin-11) and collagen IV 
isoforms (a3, a4, and a5 chains), and these 
isoforms were not found in the expanded 
mesangium (Fig. 4A) (6), suggesting that the 
deposits were of purely mesangial cell origin. 
In addition, integrin a3 was properly local­
ized adjacent to the GBM on the basal face of 
podocytes (Fig. 4A), indicating that the podo-
cytes maintained their proper polarity despite 
the multiple insults to the glomerulus. 

Immunofluorescence studies of wild-type 
kidney demonstrated that CD2AP was ex­
pressed primarily in podocytes (9). CD2AP 
exhibited an overlapping pattern of expres­
sion with synaptopodin, a podocyte foot pro­
cess marker (Fig. 4B) (10). No CD2AP stain­
ing was detected in mesangial cells, but a 
subset of tubules did stain. CD2AP staining 
was absent in the kidneys of the KO mice 
(Fig. 4B). 

Recently, mutations in the nephrin gene 
were identified as the cause of congenital ne­
phrotic syndrome of the Finnish type (11). 
Nephrin, an immunoglobulin superfamily 
member, is expressed exclusively in podocytes 
and is thought to be the major component of the 
slit diaphragm (12). Because the function of 
nephrin is reminiscent of that of CD2, we tested 
whether CD2AP associates with nephrin. 
CD2AP and nephrin, however, could not be 
solubilized from purified glomeruli with non-
ionic detergents, so we could not determine 
whether the two proteins associate in the podo­
cyte. Therefore, we generated a chimeric pro­
tein containing the extracellular and transmem­
brane domain of vesicular stomatitis virus 
(VSV) G protein fused to the cytoplasmic do­
main of nephrin. The fusion protein was ex­
pressed with myc-tagged CD2AP, and coim-
munoprecipitation was assessed by immuno-
blotting VSV G immunoprecipitations with an­
tibodies to myc (Fig. 5) (13). The nephrin 
fusion protein coimmunoprecipitated CD2AP 
at levels similar to those of the CD2 fusion 
protein (1). This was specific because a VSV G 
molecule lacking its cytoplasmic domain (G/ 
T~) did not coimmunoprecipitate CD2AP. In 
addition, nephrin and CD2AP interacted in 
vitro with the use of purified proteins and by 
yeast two-hybrid analysis (14). 

Given the role of CD2AP in T cells, we 
also examined T cell function. Stimulation of 

KO T cells with antibodies to CD3 or the 
lectin concanavalin A (Con A) demonstrated 
impaired T cell function (15). To rule out a 
relation between the kidney and immune dys­
function, we transplanted bone marrow from 
KO animals into irradiated wild-type animals 
(16). Transplanted mice still demonstrated T 
cell deficits but showed no evidence of kid­
ney dysfunction, demonstrating that the de­
fect is intrinsic to the kidney. 

Here, we demonstrated that CD2AP is crit­
ical to the integrity of the renal glomerulus. 
Disease progression appears to begin with epi­
thelial cell injury leading to a mesangial reac­
tion consisting of hyperplasia and massive ma­
trix deposition. This conclusion is supported by 
the specific expression of CD2 AP in podocytes 
and EM studies demonstrating that damage to 
podocyte foot processes is the initial lesion. 
Coimmunoprecipitation studies suggest that 
CD2AP associates with nephrin, a protein crit­
ical for podocyte function. As foot processes 
can apparently develop in the absence of 
CD2AP, we suspect that the association of 
CD2AP with nephrin mainly functions to an­
chor nephrin to the cytoskeleton. 

The role of CD2AP in the renal glomerulus 
may be similar to its role in the T cell. CD2 and 
nephrin are both immunoglobulin superfamily 
proteins involved in forming specialized cell 
adhesions. In the T cell, this adhesive complex 
is the immunological synapse (1); in the kidney, 
it is the slit diaphragm. Supporting a general 
role for CD2AP in specialized cell contacts, 
CD2AP was recently shown to associate with 
the focal adhesion protein, pl30CAS (17). Giv­
en the phenotype of the mouse, it will be 
important to determine whether CD2AP plays 
a role in the pathogenesis of human kidney 
diseases. 
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