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Tributaries of West Antarctic 
Ice Streams Revealed by 

RADARSAT Interferometry 
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lnterferometric RADARSAT data are used to map ice motion in the source areas 
of four West Antarctic ice streams. The data reveal that tributaries, coincident 
with subglacial valleys, provide a spatially extensive transition between slow 
inland flow and rapid ice stream flow and that adjacent ice streams draw from 
shared source regions. Two tributaries flow into the stagnant ice stream C, 
creating an extensive region that is thickening at an average rate of 0.49 meters 
per year. This is one of the largest rates of thickening ever reported in Antarctica. 

The \Vest Antaict~c Ice Sheet. which would 
raise sea leb el by 5 to 6 in if it melted, has been 
a subject of intense glaciolog~cal study since 
doubts about its stab~lity were f i~st  ~aised (I) 
Unlike the Gleenland Ice Sheet and most of the 
East Antarct~c Ice Sheet. much of the \lest 
Antalctic Ice Sheet 1s gounded belox sea lebel 
and uildellaill by maliile sediments \Then sat- 

urated with water (2),  these sediments may 
affect the dynamics of ice motion by allowing 
fast movement. Although the possibility of a 
catastrophic collapse of the ice sheet is under 
debate (3 ) ,  field and satellite observations have 
established that substantial changes are occur- 
ring in West Antarctica (4-6). particularly in 
the ice streams. 
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Theoretical arguments (7) and inferred 
results (8) predict that the onsets of the ice 
streams feeding the Ross Ice Shelf are mi- 
grating inland at rates of several hundred 
meters per year. Regions inland of the onsets, 
from which ice streams draw mass and inherit 
t h e m 1  and mechanical signatures, are large- 
ly unexplored. In our study, we used satellite 
radar interferometry to provide a broad-scale 
view of inland ice flow feeding into four 
West Antarctic ice streams. 

Satellite radar interferometry (9) has be- 
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come a well-established method for measur- 
ing ice motion. Unfortunately for Antarctic 
studies, all past and present civilian synthetic 
aperture radars were designed to fly with the 
instrument pointed north, so that areas south 
of 7g0S, including much of West Antarctica, 
are not imaged. In September 1997, however, 
the Canadian RADARSAT satellite (10) was 
maneuvered to point toward the south for a 
period of 30 days in order to perform high- 
resolution mapping of the complete Antarctic 
continent (11). 

The 24-day repeat period of RADARSAT 
provides an interferometric data set that is 
well suited for measuring the relatively slow 
(< 100 mlyear) motion of ice flowing toward 
the ice streams. Direct interferometric mea- 
surements in the faster moving areas, such as 
the main trunks of the ice streams, are more 
difficult because the large displacements oc- 
curring over the 24-day repeat period cause 
phase aliasing and decorrelation. In faster 
areas, vector ice displacements occurring be- 
tween a pair of precisely coregistered radar 

images were determined through "speckle 
tracking," although with lower resolution and 
poorer accuracy (12). In addition, a combina- 
tion of interferometry and speckle tracking 
was used to achieve vector estimates in areas 
where observations from only a single direc- 
tion were available. 

We used data from the RADARSAT Ant- 
arctic Mapping Mission to produce a surface 
velocity map (13) of most of the region flow- 
ing into ice streams B, C, D, and E in West 
Antarctica (Fig. 1). Most of the area mapped 
in Fig. 1 lacks visible features, such as cre- 
vasses, required for feature tracking with op- 
tical imagery (14); interferometric methods 
are free of such requirements. In situ velocity 
measurements (Fig. 1) are sparse and irregu- 
larly spaced (19, so that, with the exception 
of the regular grid in the upstream region of 
ice stream D (16), they do not reveal spatial 
patterns of flow. These data, however, pro- 
vide an important source of control for our 
velocity field. Our interferometric velocity 
data increase the number of velocity mea- 
surements in regions upstream of the ice 
streams by several orders of magnitude. 

The data (Fig. 1) show that individual ice 
streams are fed by multiple tributaries and 
that source areas are shared. Ice stream E 
receives ice from two tributaries that share 
the same upstream reservoir as a major trib- 
utary to ice stream D. The other major tribu- 
tary that feeds D, previously identified and 
mapped through a field campaign (16), orig- 
inates from the same source area as a previ- 
ously unknown major tributary leading to ice 
stream C. Much of the southern tributary of 
ice stream C draws ice from close to the head 
of ice stream B. 

Previous calculations of ice stream mass 
balance assigned distinct catchment basins to 
individual ice streams (1 7, 18). Shared source 
regions complicate the delineation of adja- 
cent ice stream catchment areas and the cal- 
culation of individual ice stream mass balances. 
Moreover, shared source regions make it 
more likely that the relative contributions to 
neighboring ice streams change over time. 

Ice streams have been mapped by a combi- 
nation of visible and radar imagery and by radio 
echo sounding (18-20). Our results show that, 
upstream of the previously mapped ice streams, 
there exists a network of tributaries extending 
far into the ice sheet interior. Tributary speeds 
are faster than that of the surrounding ice, yet 
the speed contrast is too small to generate cre- 
vassed margins. The transition to an ice stream 
with crevassed margins takes place at a speed of 
-100 @ear. Short isolated sections of this 
network have been identified before (21. 22). . ,, Fig. 1. Ice flow speed determined from multiple swaths of RADARSAT Antarctic Mapping Mission but ~ i ~ .  1 shows the intricate nature flow 

data (13) coregistered with a mosaic of advanced very high resolution radiometer imagery. Ice flow network inland of the ice streams. Speeds with- is generally from top Left to bottom right. The red dots show the locations of in situ velocity 
measurements used for control, with small red dots corresponding to the survey grid mentioned in in the tributaries are an order magni- 
the text (16). The red box indicates the locations of data shown in Fig. 4. Blue lines show previously tude faster than that of the ~ o u n d i n g  ice. It is 
mapped ice stream margins (ice streams are indicated by letter). mlyr; meters per year. probable that the distinct dynamics of ice 
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streams coincides roughly with the formation of the northern tributary of ice stream C and the tributaries. Subglacial valleys are also ex- 
crevassed margins and that the dynamics within 
the tributary network upstream of the ice 
streams represents a combination of internal 
deformation and basal sliding. 

The tributary network coincides with val- 
leys in the subglacial topography (Fig. 2), 
with the correspondence being much stronger 
for the tributaries than for the ice streams 
(23). The tributaries are guided by and con- 
tained within subglacial valleys, and only 
rarely does ice flow cross a ridge between 

southern tributary of ice stream D. The faster 
flow in this trench is probably due to the fact 
that this ice is nearly twice as thick as the 
adjacent ice (24). 

Relative differences in ice thickness in 
and adjacent to other subglacial valleys are 
not as large as those for the Bentley Trench. 
Thus, other processes are likely involved in 
the flow of those tributaries. In a region 
where accumulation and geothermal heat flux 
are constant, thicker ice will be warmer near 

pected to have collected sediment during 
times when the ice was absent, as well as the 
subglacial water formed from geothermal 
heating and basal friction. Because subglacial 
water and sediment are necessary for stream- 
ing flow, it is possible that they also contrib- 
ute in some measure to tributary flow (21). 

Ice streams D and E form in a broad 
low-relief basin (Fig. 3) and are fed by a 
network of narrow tributaries 10 to 20 km 
wide. Several features of the D and E regions 

valleys. The deepest subglacial valley, called the base, making the ice softer and more stand out. First, most of the basin feeds ice 
the Bentley Subglacial Trench (Fig. 2), is deformable, but this effect in combination stream E (18). Second, the southern tributar- 
over 2500 m below sea level. Within this with the larger ice thickness may not be ies of E and the northern tributaries of D 
trench, a long wide tributary begins that feeds sufficient to explain the larger speeds in other diverge from one upstream source to become 

a network of features narrower than the coa- 
lescing tributaries seen elsewhere. Figure 2 
shows that this network conforms to relatively 
narrow valleys in the subglacial topography. 
Although these tributaries and the down- 
stream portions of D and E are clearly sepa- 
rated from each other by bedrock ridges, they 
are joined in the tributary region. Third, the 
pattern of speed (Figs. 1 and 3) shows alter- 
nating acceleration and deceleration as tribu- 
tary ice flows toward ice streams D and E. 

Fig. 2. Ice 'speeds up to  100 mlyear contoured over bed topography. The area shown is 
approximately the same as in Fig 1. Basal topography is the difference between ice sheet surface 
elevation (30) and ice thickness from a number of sources (29-37), resulting in a bed map with 
spatially varying resolution. 

Fig. 3. Ice speed superimposed on surface elevation. View is upstream from the Ross Ice Shelf 
toward the inland ice divide. A section of the Transantarctic Mountains appears on the right. The 
origin is at the South Pole. 

In contrast to ice streams D and E, obser- 
vations and modeling studies have suggested 
that ice streams B and C are linked (19, 25), 
possibly because the bedrock topography 
between the two ice streams is relatively sub- 

I 1.5 1 0.5 0 .  p! 
m 

1.5 
rate of ice thickness changs (rrYyr) 

Fig. 4. (lop) Surface elevation along profile line 
A-B. (Bottom) Rate of ice thickness change (col- 
ors), surface elevation (contour lines), and flow 
direction over the box outlined in Fig. 1 (right 
edge corresponds to  downstream edge in Fig. 1). 
Elevation contour interval is 25 m. Vector length 
is proportional to  ice speed. Location of the Up- 
stream C (UpC) camp is marked. White area at 
the right-hand edge of the bottom panel is due to  
a small gap in velocity data that is enlarged 
through subsequent calculations. 
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dued (Fig. 2). Although ice stream B currently 
discharges —50% more ice than it accumu
lates over its catchment area (17, 18) and 
discharge from neighboring ice stream C is 
negligible (18), their combined discharges 
approximately balance their combined accu
mulation. Figures 1 and 3 show that the south
ern tributary to ice stream C cuts across the 
heads of the much shorter northern tributaries 
feeding ice stream B. This suggests that there 
is a limited area from which ice stream B can 
continue to draw ice without interacting with 
the northern tributary now flowing into ice 
stream C. 

Although there are two active tributaries 
flowing into the head of ice stream C, the 
main body of the ice stream is known to have 
ceased rapid motion —140 years ago (26). 
Thus, the boundary region between the active 
tributaries and the formerly streaming portion 
of the ice stream must be thickening over 
time. The mean thickening rate over the red 
box in Fig. 1 is 0.49 ± 0.02 m/year (Fig. 4, 
bottom) (27). This thickening rate agrees 
well with an independent in situ measurement 
of 0.56 m/year obtained at the Upstream C 
camp (Fig. 4, bottom) (28). 

The thickening in this region is probably 
responsible for the formation of the 70-km-
wide bulge discernible in the surface ele
vations (Fig. 4, top). Slightly higher thick
ening rates at the bulge's perimeter (ap
proximately delineated by the 575-m eleva
tion contour in Fig. 4, bottom), suggest that 
the bulge is spreading slowly. Because ac
tive ice streams generally have lower sur
face elevations than the adjacent ice, this 
bulge probably has thickened more than its 
average height of 25 m above a horizontal 
datum. If the area now occupied by the 
bulge was depressed by a mean of 45 m 
below the adjacent ice when ice stream C 
stopped, the present flow field and the as
sociated thickening rates would have 
formed a bulge with the observed volume. 
A depression of this magnitude is feasible 
on the basis of a comparison with active ice 
streams [for example, tributary B2, adja
cent to the thickening portion of ice stream 
C (29)]. Thus, it is possible that the tribu
tary flow of ice stream C has persisted 
despite the stagnation of the ice stream. 

In the blue area of Fig. 4 (bottom) is an 
area thinning at a mean rate of 1 m/year. 
Examination of the flow pattern shows that 
ice in this region is diverging strongly as 
some ice continues to flow along ice stream 
C, and neighboring ice turns nearly 90° to 
flow into the northernmost branch of ice 
stream B (Fig. 4). This appears to be an 
evolving encroachment of ice stream B on 
C. Despite the high thinning rate, no ex
pression of this pattern is seen in the surface 
elevations, suggesting that this encroachment is 
more recent than the stagnation of ice stream C. 

Overall, the data show that long tribu
taries, flowing much faster than the sur
rounding ice, form an extensive network, 
delivering ice to the ice streams. These 
tributaries coincide with valleys in the sub-
glacial floor where sediments, subglacial 
water, and warmer ice are expected to con
centrate. Many tributaries emanate from 
common source areas, complicating the no
tion of distinct catchments. The discovery 
of this tributary network and its speeds 
establishes that the transition from slow 
inland flow to fast ice stream flow occurs 
gradually, over an extended distance. 
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