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method and suggests that general acid-base
catalysis by nucleotide side chains is a mech-
anism that can be used in RNA-catalyzed
reactions.
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Male Attractiveness and
Differential Testosterone

Investment in Zebra Finch Eggs
Diego Gil,*{ Jeff Graves, Neil Hazon, Alan Wells

Good-genes hypotheses of sexual selection predict that offspring fathered by
preferred males should have increased viability resulting from superior genetic
quality. Several studies of birds have reported findings consistent with this
prediction, but maternal effects are an important confounding variable. Those
studies that have attempted to control for maternal effects have only con-
sidered differential maternal investment after egg laying. However, female
birds differentially deposit testosterone in the eggs, and this influences the
development of the chick. This study shows that female birds deposit higher
amounts of testosterone and 5a-dihydrotestosterone in their eggs when mated

to more attractive males.

Female preferences for ornaments that indi-
cate male genetic quality would allow fe-
males to enhance the viability of their off-
spring (/). Evidence of female preference for
traits indicative of “good genes” has been
found in some species (2). In birds, several
studies have found evidence for enhanced
survival of offspring fathered by highly orna-
mented males (3, 4), but it remains possible
that this effect is a resuit of differential fe-
male investment in the offspring of these
males. Differential investment by females in
chicks fathered by attractive males has been
experimentally demonstrated in lab and field
studies (5).

Although some of the studies reporting
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good-genes effects in birds have attempted to
control for maternal effects, these studies
have only considered investment after laying
(4). However, it is possible that differential
investment may occur before laying. Females
of several bird species deposit varying
amounts of testosterone in their eggs (6-9),
and this variation influences the development
of the chick. Chicks that hatch from eggs with
high amounts of testosterone beg for food
more intensively, grow faster than other
chicks, and are more likely to become dom-
inant once they fledge (6, 10).

We predicted that female birds would
deposit higher amounts of testosterone
when mated to attractive males than when
mated to.less attractive males. In the zebra
finch (Taeniopygia guttata), the attractive-
ness of the male can easily be manipu-
lated by using leg bands of different colors.
Females pair preferentially with red-band-
ed males and avoid green-banded ones.
This manipulation has a more substantial
effect on male attractiveness than any other
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measured male characteristic (/7).

We conducted an experiment in which
male zebra finches were given either red or
areen color bands on both legs. Males were
randomly assigned to either color band.
Twelve females were randomly allocated to
two groups of six, each with either a red- or
green-banded male for their first mate. Eggs
were removed for hormone analysis after lay-
ing and replaced by dummy eggs. After com-
pletion of the clutch, the nest was removed,
and all females were given a different mate
with the other color band and allowed to lay
a second clutch (72).

The amount of testosterone (T) and Sc-
dihydrotestosterone (DHT) in the yolk was
measured together first, and then DHT alone
was measured. The amount of T was calcu-
lated from these two measurements (/3).

Females mated with red-banded males de-
posited significantly more T and DHT in the
eggs than did the same females when mated
with green-banded males (Fig. 1). This find-
ing questions the validity of the existing ev-
idence for good-genes models of sexual se-
lection in birds. Because experimental ma-
nipulation of yolk testosterone concentrations
in canaries (Serinus canaria) increases both
growth rates and begging rates (/0) and there
is a correlation between the concentration of
yolk testosterone and the social rank when
fledged (6), the increased viability of the
chicks could be due to females investing
higher concentrations of androgens in the
eggs after mating with more attractive males.
Our results show that it is essential to control
for this form of differential maternal invest-
ment before concluding that females are get-
ting good genes for their offspring by mating
with more attractive males.

Why do females not put the same amount
of testosterone in their eggs, regardless of
male attractiveness? The variation in testos-
terone investment between clutches sug-
gests that this investment has a cost, in-
curred either by the females or the off-
spring. The concentration of testosterone in
the yolk of the egg is positively correlated
“with the amount of testosterone in the fe-
male during the yolk phase (7). Testoster-
one concentrations in females increase with
high rates of intrasexual aggression (/4).
but little is known about the effects of
increased concentrations in females (/5). If
male attractiveness correlates with offspring vi-
ability (3—4), then it might pay females to incur
a cost and to invest more testosterone in the
offspring fathered by attractive males. This
would be the case whether the benefits to the
female were direct or indirect (genetic).

Alternatively, the cost might be borne by
the offspring. If increased concentrations of
testosterone in the yolk suppress the immune
system of the developing chick (/6), a good-
genes theory would predict that only chicks
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sired by highly ornamented males would be
able to withstand high concentrations of tes-
tosterone. There is evidence that physiologi-
cal concentrations of testosterone depress im-
mune function when administered to young
chickens (/7), although in adults the evi-
dence is mixed (/8). We do not know if
exposure to high concentrations of testoster-
one in the egg suppresses the immune system
in the developing chick, but if so, the pattern
of differential investment of testosterone be-
tween clutches that we have found could be
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Fig. 1. Mean contents per milligram of yolk of
(A) testosterone (T) plus Sa-dihydrotestoster-
one (DHT), (B) DHT, and (C) T (error bars show
standard errors). The open bars represent the
condition when the females were mated to
red-banded males, and the shaded bars repre-
sent the condition when the females were mat-
ed to green-banded males. Group 1 females
were mated to a green-banded male first and
then to a red-banded male. Group 2 females
were mated to a red-banded male first and
then to a green-banded one. Analysis of vari-
ance (ANOVA) showed that females with red-
banded mates laid eggs with significantly high-
er concentrations of all three androgen mea-
sures than did the same females when mated
to green-banded males [repeated measures
ANOVA with females nested within order and
clutches within females: T + DHT: F(1,52) =
47.8, P < 0.0001; DHT: F(1,52) = 194, P =
0.001; T: £(1,52) = 5.46, P = 0.023]. The inter-
action between order and treatment was also
significant for all three [T + DHT: F(1,52) =
26.97, P < 0.0001; DHT: £(1,52) = 18.80, P =
0.0001; T: F(1,52) = 23.55, P < 0.001].

an adaptive response; chicks fathered by less
ornamented males would not normally be
able to withstand the stress of higher amounts
of testosterone.

Hatching asynchrony is a widespread phe-
nomenon in birds in which the last eggs of a
brood hatch later than the first (/9). This
hatching asynchrony results in a feeding hi-
erarchy within the brood that is a good pre-
dictor of which chick will die in the case of
brood reduction. The uneven distribution of
testosterone within a clutch has important
repercussions for the chicks that hatch last;
chicks with extra testosterone will be given a
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Fig. 2. Mean contents per milligram of yolk of
(A) T plus DHT, (B) DHT, and (C) T for position
in the laying order (error bars show standard
errors). The open bars represent the condition
when females had a red-banded mate, and the
shaded bars represent the condition when the
mate was green-banded. An analysis of covari-
ance found that there was no difference in the
slopes for females with red- or green-banded
mates [T + DHT: F(1,107) = 1.11, P = 0.29;
DHT: F(1,107) = 1.98, P = 0.16; T: F(1,107) =
0.04, P = 0.85]. All regressions were significant-
ly negative: T + DHT for red-banded males: y =
16.3 — 1.48x, P = 0.017; T + DHT for green-
banded males: y = 10.2 — 0.78x, P = 0.016;
DHT for red-banded males: y = 10.6 — 1.14x, P
= 0.027; DHT for green-banded males: y =
5.02 — 0.39x, P = 0.045; T for red-banded
males: y = 5.68 — 0.34x, P = 0.038; T for
green-banded males: y = 5.14 — 0.39%x, P =
0.043.
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head start in sibling rivalry (8). Both increas-
ing and decreasing amounts of testosterone
with laying order of eggs have been described
in different species (6, 8, 9). This has been
interpreted as maternal manipulation to ame-
liorate or impair, respectively, the survival
prospects of the last-hatched chicks. Zebra
finches do show asynchronous hatching, but
it is more pronounced in the lab than in the
field (20). The amount of T and DHT that
female zebra finches deposited in the egg
declined with the position in the laying se-
quence, regardless of males’ leg-band color
(Fig. 2), suggesting that females are reinforc-
ing the feeding hierarchy within the brood.
This could be adaptive when food conditions
are poor or very unpredictable. If the proba-
bility of brood reduction covaried with male
quality—that is, if brood reduction were less
likely when females were paired to attractive
males—then we would expect that testoster-
one would be more evenly distributed within
the clutches fathered by red-banded males
than in those fathered by green-banded
males. However, the regression slopes of an-
drogens with egg laying order were not dif-
ferent between the two conditions (Fig. 2),
suggesting that the conditions leading to
adaptive brood reduction in this species are
more dependent on environmental conditions
than on male quality.
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Neanderthal Cannibalism at
Moula-Guercy, Ardéche, France
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The cave site of Moula-Guercy, 80 meters above the modern Rhone River, was
occupied by Neanderthals approximately 100,000 years ago. Excavations since
1991 have yielded rich paleontological, paleobotanical, and archaeological as-
semblages, including parts of six Neanderthals. The Neanderthals are contem-
porary with stone tools and faunal remains in the same tightly controlled
stratigraphic and spatial contexts. The inference of Neanderthal cannibalism
at Moula-Guercy is based on comparative analysis of hominid and ungulate
bone spatial distributions, modifications by stone tools, and skeletal part

representations.

Baume (“cave”) Moula-Guercy is in south-
eastern France on the west bank of the Rhone
River, in Ardeche. The stratigraphic sequence
is exclusively Middle Paleolithic. A test ex-
cavation in 1991 revealed 12 hominid skele-
tal fragments, some with cut marks (/).

The lowest exposed units (levels XVI to
XX) represent a cold period that is biochro-
nologically dated to the terminal Middle
Pleistocene (isotope stage 6). The upper units
(levels IV to XI) represent a cool period
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corresponding to isotope stage 4. Level VI is
volcanic tephra dated to 72,000 = 12,000
years ago (2). A thick and homogenous de-
posit (levels XII through XV) between the
upper and lower units contains an abundant
fauna representative of a temperate forest.
We interpret the data to indicate an Eemian
age for the latter deposits (isotope stage 5,
80,000 to 120,000 years ago) (2). The Nean-
derthal fossils all derive from level XV, a
temporary Mousterian (Middle Paleolithic)
occupation thought to date to between
100,000 and 120,000 years ago on the basis
of biochronologies of large and small mammals

. (2). Approximately 30% of the estimated vol-

ume of this unit has been excavated (Fig. 1).
Contemporary European sites are rare. Moula-
Guercy’s detailed paleoenvironmental and be-
havioral records complement its Neanderthal
remains in illuminating the transition from the
Middle to the Upper Pleistocene.

Level XV contains a lithic assemblage
attributable to the Ferrassie Mousterian, a
lithic tradition based on a high frequency of
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