A number of terrestrial arthropods have
the capability to balance their water budget
by actively absorbing water from highly un-
saturated atmospheres. These truly terrestrial
arthropods achieve this balance by a combi-
nation of a cuticle with very low permeability
and locally creating extremely low water ac-
tivity in specialized tissues (3). In common
with most soil arthropods, F. candida has a
highly permeable integument, making local-
ized active water absorption inappropriate.
This animal is therefore forced to maintain all
its body fluids hyperosmotic to its surround-
ings to allow net water uptake from the at-
mosphere by passive diffusion along the gra-
dient in water potential. We have shown that
glucose and myoinositol account for a large
portion of the measured increase in osmotic
pressure. This type of water vapor absorption
confers the capability of meeting the water
requirements of a terrestrial arthropod under
prolonged drought stress (/4). The adaptive
importance of this mechanism is obvious,
allowing F. candida to remain active in the
same range of drought intensities that plants
are capable of surviving and that must there-
fore occur throughout the root zone (15).
Hitherto, experimental designs in studies of
hygrophilic soil arthropods have masked the
discovery of such water-regulating abilities.
The physiological adaptations of these ani-
mals to desiccation require reevaluation.
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Coincident Induction of
Long-Term Facilitation in Aplysia:
Cooperativity Between Cell
Bodies and Remote Synapses

Carolyn M. Sherff'* and Thomas J. Carew’?

Induction of long-term synaptic changes at one synapse can facilitate the
induction of long-term plasticity at another synapse. Evidence is presented here
that if Aplysia sensory neuron somata and their remote motor neuron synapses
are simultaneously exposed to serotonin pulses insufficient to induce long-term
facilitation (LTF) at either site alone, processes activated at these sites interact
to induce LTF. This coincident induction of LTF requires that (i) the synaptic
pulse occur within a brief temporal window of the somatic pulse, and (ii) local
protein synthesis occur immediately at the synapse, followed by delayed pro-

tein synthesis at the soma.

Synaptic plasticity, commonly thought to be
a neuronal substrate for learning and memo-
1y, can exist in several temporal phases. In
both hippocampus (/) and Aplysia (2—-6),
temporal phases of plasticity range from short
term (minutes) to long term (hours to days).
Recent evidence from both systems has
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shown that long-term changes in synaptic
strength induced at one synaptic site can fa-
cilitate the induction of long-term changes at
another site (7, 8). We examined induction of
long-term synaptic plasticity in the intact cen-
tral nervous system of Aplysia by exploring
the temporal and spatial constraints on inter-
actions between two structurally remote cel-
lular compartments: (i) the cell bodies of tail
sensory neurons.(SNs) and their proximal
synapses onto interneurons (9), located in the
pleural ganglion, and (ii) their distal synapses
onto tail motor neurons (MNs) (2 to 3 mm
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away) in the pedal ganglion. We found that
these two sites can cooperate in inducing
long-term facilitation (LTF). Moreover, there
is a narrow temporal window within which
this cooperation must occur. Finally, this
form of coincident LTF requires local protein
synthesis immediately at the synapse fol-
lowed by a delayed wave of protein synthesis
at the soma.

We applied serotonin (SHT) to the somat-
ic region and the distal synaptic terminals of
the SNs by using a two-compartment cham-
ber (3) (Fig. 1A). First, we determined dura-
tions of SHT that alone were below threshold
for induction of LTF (>24 hours) in either
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Fig. 1. LTF is induced by coincident pulses of 5HT to somatic and
synaptic compartments. (A) Diagram of the two-compartment
recording chamber (3). (B to D) (Left) Timing of SHT perfusion

e

™

REPORTS

compartment (/0). A 25-min perfusion of SHT
restricted to the soma did not induce LTF,
excitatory postsynaptic potential (EPSP) ampli-
tudes at the long-term test (20 to 22 hours after
administration of SHT) were not significantly
different from baseline [+17.3 £ 8.2%; not
significant (NS)] (Fig. 1B) (/7). Synapses were
also tested for short-term facilitation (STF),
which lasts <15 min, after the first 5 min (T1)
and at the end (T2) of SHT perfusion. The lack
of facilitation at T1 (—=9.0 = 6.3%; NS) and T2
(—11.5 = 8.4%; NS) confirms that STF is not
induced by SHT at the soma (3). At the syn-
apse, a 5-min pulse of SHT induced STF im-
mediately (T2, +117.0 = 22.6%; P = 0.004)
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(Fig. 1C), but LTF was not observed 20 to 22
hours later (+5.2 = 13.4%; NS) (Fig. 1C) [see
also (2, 3)]. However, when the SHT pulse in
the synaptic compartment overlapped with the
final 5 min of somatic SHT, significant LTF
was induced (+212.2 * 60.5%; P = 0.017)
(Fig. 1D). As before, no facilitation was ob-
served at the T1 test (—8.0 = 8.6%; NS),
and STF was induced at the T2 test
(+159.6 = 51.5%; P = 0.013). Because °
neither somatic nor synaptic SHT treatment
alone was capable of inducing LTF, these
results indicate that events in the two dis-
tant compartments must somehow interact
for LTF induction to occur.

We next delivered the brief synaptic SHT
pulse either 20 min before or 15 min after
somatic SHT treatment (Fig. 2A). Both
groups expressed STF after synaptic- expo-
sure (before, +169.0 = 22.6%; after,
+101.1 £ 22.8%; P < 0.01 in both cases).
When the synaptic pulse of SHT preceded
somatic SHT, reduced but significant LTF
was induced (+57.5 £ 20.6%; P = 0.038)
(Fig. 2A1). However, LTF was not induced
when the synaptic pulse followed somatic
SHT (+9.3 £ 22.9%; NS) (Fig. 2A2). In both
cases, EPSP amplitudes at the LTF test were
significantly reduced compared with those
expressed when the somatic and synaptic
SHT applications overlapped (/7). Thus,
within a surprisingly stringent time window,
coincident SHT exposure to both compart-
ments induced significantly greater LTF than
in all other groups (P < 0.04 for all pairs)
(Fig. 2B). Interestingly, the time window
may be somewhat asymmetric. When the
synaptic pulse preceded the somatic pulse,
some (reduced) LTF was still induced, but
when the synaptic pulse followed the somatic
pulse by only 15 min, the window was com-
pletely closed; no LTF was induced.
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Fig. 3. Coincident induction of LTF requires two
temporally distinct waves of protein synthesis.
Summary for preparations treated with eme-
tine during 5HT in the synaptic or the somatic
compartment (n = 5 for each) (A) and after
5HT in the somatic compartment at the indi-
cated times (B). No-emetine control, n = 5;
emetine for 1to 4 hours (Em1-4h), n = 5; and
emetine for 3 to 6 hours (Em3-6h), n = 4. Each
group was compared with its own no-emetine
control. Asterisks, P < 0.05.
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The temporal constraint shown in Fig. 2B
could be achieved by activity of interneurons
that have synaptic terminals in both ganglia
(9). To examine this possibility, we blocked
synaptic transmission with Ca?"-free ASW
containing 3X normal Mg?*" (165 mM
MgCl,) during SHT application. In the ab-
sence of synaptic activity, significant LTF
was nonetheless induced after coincident so-
matic and synaptic SHT (+48.3 = 19%; P =
0.035; n = 8) but not after somatic SHT alone
(+2.5 = 8%; NS; n = 8). These results
support the hypothesis that the coincident
effect is restricted to the SN-MN synapse.

Local protein synthesis in hippocampal den-
drites (12) and Aplysia neurites (8) has been
implicated in the induction of long-term synap-
tic changes. To examine the role of protein
synthesis, we blocked translation in the synaptic
and somatic compartments independently. We
perfused the translational blocker emetine (100
wM) into either compartment from 25 min be-
fore somatic SHT treatment until 30 min after
SHT offset in both compartments (SHT applied
as in Fig. 1D). Significant LTF was expressed
in the control group (+742 * 7.4%; P <
0.001) and in the somatic-emetine group
(+78.2 = 19.9%; P = 0.017); however, induc-
tion of LTF was blocked in the synaptic-eme-
tine group (+21.0 £ 12.8%; NS) (Fig. 3A)
(13). There was no significant difference be-
tween LTF in the control and somatic-emetine
groups, and both were significantly elevated
compared with the synaptic-emetine group
(P < 0.04 in both cases) (/4). Finally, emetine
alone had no effect in either compartment (75).

These data show that coincident induction
of LTF requires protein synthesis at the syn-
apse, but not at the cell body, during SHT
exposure. The synaptic protein synthesis re-
quirement is surprising because the synaptic
compartment received only a single brief
pulse of SHT, which is normally capable of
inducing only STF (which is protein synthe-
sis—independent) but is incapable of inducing
LTF (which is protein synthesis—dependent)
(6). Although a dependence on synaptic pro-
tein synthesis for long-term synaptic en-
hancement was observed in previous studies

Fig. 4. Two potential
mechanisms that could
account for the narrow
time window for coinci-
dent induction of LTF. (A)
Immediate coincidence: a
5-min 5HT pulse at the
synapse induces local pro-
tein synthesis, generating
a signal that interacts im-
mediately (during 5HT)
with processes triggered
by somatic 5HT. (B) De-
layed coincidence: al-
though the synaptic 5HT

Immediate Coincidence

T Transcription — £ Translation
—_—_

Translation
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(7, 8, 12), this requirement has been found at
sites of induction of long-term plasticity but
not at the sites that were marked by a brief
tagging or capture signal that itself was sub-
threshold for long-term potentiation or LTF
(7, 8). Our results indicate that (i) synaptic
protein synthesis can be activated by a brief
pulse of SHT (which is subthreshold for LTF)
and (ii) the newly synthesized proteins can
contribute to induction of LTF (76).

Because SHT-induced translation is
known to occur in the SN cell bodies (17), we
next tested whether somatic protein synthesis
is required at a later time after SHT exposure.
Coincident LTF was blocked if emetine was
applied to the soma compartment 1 to 3 hours
after termination of SHT exposure (+18.8 =
13.0%; NS) but not 3 to 6 hours after SHT
[emetine, +89.5 * 33.6%; no emetine con-
trol, +79.4 = 7.3%; P < 0.04 for both (/8)]
(Fig. 3B). Thus, coincident LTF requires two
temporally distinct waves of protein synthe-
sis: an immediate wave at the synapse (/9)
and a delayed wave 1 to 3 hours later at the
soma.

The surprisingly brief time window when
the cooperative effect between soma and syn-
apse must take place (Fig. 2B) suggests two
possible mechanisms (Fig. 4). First, the win-
dow might be narrow because the processes
set in motion by SHT must coincide at the
time of SHT exposure (immediate coinci-
dence, Fig. 4). This model excludes axonal
transport of newly synthesized proteins from
the remote synapses to the soma because
retrograde transport in Aplysia is too slow to
allow somatic interactions in a 15-min win-
dow (20). Instead, a more rapid form of
interaction is necessary; for example, initia-
tion of Ca?* waves (21) or a chain of phos-
phorylation (22). Alternatively, the temporal-
ly constrained interaction need not occur at
the time of 5HT exposure. It could be
achieved with a coordinated delay line in
which SHT activates chains of events in each
compartment that are initially independent
but that come into register later (Fig. 4). This
mechanism needs to be precisely tuned to
keep the events initiated in the soma and

Delayed Coincidence

Transcription — £ Translation

_—>

' o

Translation

pulse occurs during somatic SHT treatment, the processes activated in these two regions are
initially independent but are precisely timed so that they intersect later to induce LTF.
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synapse in temporal register (to maintain the
15-min window). In this model, retrograde
axonal transport is a viable mechanism; it
could contribute to a delay line by translocat-
ing newly synthesized synaptic proteins to
the soma, where they could interact with
translational events that occur at a later time
(see Fig. 3B).

In conclusion, our results, taken with pre-
vious observations in hippocampus (7) and
cultured SN-MN synapses in Aplysia (8), in-
dicate that the molecular mechanisms in-
volved in changes in synaptic strength at one
synapse can interact with intracellular path-
ways activated in other regions of the cell.
Here we show that subthreshold activation in
two anatomically remote cellular regions
(soma with proximal synapses and distal syn-
apses) can have an interactive role in induc-
tion of long-term changes. These findings
emphasize the fact that, even though the soma
is often anatomically distant from the sites of
long-term synaptic modification (23), in
combination with local protein synthesis at
the synapse it can play an active and tempo-
rally coordinated role in induction of long-
lasting synaptic change.
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Shape Representations and
Visual Guidance of Saccadic Eye
Movements

Tirin Moore

One hallmark of primate vision is that the direction of gaze is constantly shift-
ing to position objects of interest appropriately on the fovea, where visual
acuity is greatest. This process must involve the close cooperation of oculo-
motor and visual recognition mechanisms because visual details must be trans-
lated into specific motor commands. This paper describes the correspondence
between the presaccadic activity of V4 neurons and the degree of visual
guidance of saccadic eye movements to objects of different form. The results
suggest that neurons that participate in coding visual stimuli are also involved
in guiding the eyes to prominent features of objects.

Because only a small fraction of the primate
retina has heightened acuity, the point of
fixation must constantly be moved about to
allow detailed visual processing of objects of
interest within the visual scene. Moreover,
this must be done so that each change in gaze
places the eye at convenient locations on the
target stimulus once the movement is com-
pleted. For example, when scanning this text,
the reader’s eyes must accurately jump from
word to word so that when each item is
fixated it can be processed rapidly and the
next eye movement can be planned. Studies
of eye movements during reading have
shown that the speed at which subjects scan
text is determined partly by where each eye
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movement places the fovea within words and
that for each word there appears to be an
optimal landing position for the eye (/). To
accomplish this requires that each individual
eye movement be guided by detailed visual
information obtained from locations periph-
eral to the current point of fixation. During all
types of visual scanning, saccadic eye move-
ments of both humans and monkeys follow
the detail of visual images to a striking degree
(2). This fact suggests that visual cortical
mechanisms responsible for coding stimulus
form are also actively involved in guiding eye
movements to salient features of objects.
Most studies of oculomotor mechanisms
have ignored the possible role of visually selec-
tive neurons in programming eye movement
commands. Among the two apparent process-
ing streams within the primate visual cortex (3),
only the dorsal projecting visual areas, areas in
the posterior parietal cortex, have been impli-
cated in oculomotor control. In contrast, ventral
visual cortical areas that contain neurons selec-
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tive for stimulus features, such as color and
orientation, have been primarily regarded as
passive perceptual mechanisms (4). The major
reason for this view is that dorsal stream visual
areas contain neurons that respond in conjunc-
tion with saccadic eye movements and that
electrical stimulation of some dorsal areas can
evoke eye movements (5). There is, however,
little evidence of the involvement of ventral
stream visual areas in the programming of eye
movements.

Extrastriate area V4 is the major source of
visual input to the inferior temporal cortex
(6), the terminus of the ventral stream; thus,
neurons within V4 are very sensitive to stim-
ulus form and color (7). Neurons within this
area are modulated by focal attention in the
absence of eye movements (§). However,
they are also activated in advance of visually
guided saccadic eye movements (9). The sac-
cade-related activation within this area may
merely reflect the fact that shifts in attention
typically precede shifts in gaze, but it also
may reflect a mechanism by which detailed
visual information useful in guiding the eyes
to salient features of objects is synchronized
with the saccade command. We examined
this possibility by studying the correspon-
dence between neural activation preceding
eye movements to targets of different form
and the metrics of saccadic eye movements.

We recorded the activity of 91 single neu-
rons in extrastriate area V4 of two monkeys
(Macaca mulatta) performing a visually
guided delayed saccade task. In this task, the
monkeys were trained to make saccadic eye
movements to stable visual stimuli presented
within the visual receptive field (RF) of a V4
neuron (/0). The response of a V4 neuron
during the saccade task is shown in Fig. 1A.
The responses of the neuron during the first
half of each trial are aligned to the onset of
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