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Recognition of the 
Codon-Anticodon Helix by 

Ribosomal RNA 
Satoko Yoshizawa, Dominique Fourmy, Joseph D. Puglisi" 

Translational fidelity is established by ribosomal recognition of the codon- 
anticodon interaction within the aminoacyl-transfer RNA (tRNA) site (A site) 
of the ribosome. Experiments are presented that reveal possible contacts be- 
tween 165 ribosomal RNA and the codon-anticodon complex. N1 methylation 
of adenine at position 1492 (A1492) and A1493 interfered with A-site tRNA 
binding. Mutation of A1492 and A1493 to guanine or cytosine also impaired 
A-site tRNA binding. The deleterious effects of A1492G or A14936 (or both) 
mutations were compensated by Z'fluorine substitutions in the mRNA codon. 
The results suggest that the ribosome recognizes the codon-anticodon complex 
by adenine contacts to the messenger RNA backbone and provide a mechanism 
for molecular discrimination of correct versus incorrect codon-anticodon pairs. 

The fidelity of protein synthesis is deteimined 
by the interaction of an mRNA codon with the 
anticodon of the coirect (cognate) transfer RNA 
(tRNA) within the aminoacyl-tRNA site (A 
site) of the ribosome. The riboso~ne distinguish- 
es the correct codon-ailticodon pair fiom all 
noncognate pairs. Despite the relatively low 
specificity of the codon-anticodon interaction, 
the measured fidelity of translation is about one 
eiror per lo4 amino acids (I). The riboso~lle 
achieves high fidelity through a kinetic discrim- 
ination mechanism that couples codon-antico- 
don recognition on the riboso~ne with hydroly- 
sis of guanosine triphosphate by elongation fac- 
tor Tu (2). Rate constants for tRNA binding to 
the ribosomal A site are tuned by folnlation of 
a cognate or noncognate codon-anticodon pair 
(3). These processes suggest ribosomal recog- 
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nition of the codon-anticodon pair within an 
active site for decoding (4). The molecular 
basis of this recognition is not lu~ovin. 

Highly conse~ved regions of riboson~al 
RNA (rRNA) form the tRNA-binding sites (5). 
The codon-anticodon interactions in the pepti- 
dyl-tFWA site (P site) and A site occur on the 
small (30s) ribosonlal subunit (6). Fewer nu- 
cleotides, located primarily within the 1400 to 
1500 region of rFWA, have been implicated in 
A-site tFWA binding than in P-site tFWA bind- 
ing (6). This agrees with the affinity of a cog- 
nate tRNA for the A site being one-fiftieth that 
for the P site. RNA mutations in 16s rRNA 
affect the fidelity of translation (5);  and amino- 
glycoside antibiotics that decrease the fidelity 
of translation (7) bind to 16s rRNA and perturb 
rFWA shucture (8). These data suggest that the 
ribosome recognizes the codon-anticodon corn- 
plex within a defined region of 16SrRNA in the 
30s subunit. 

Here, we describe experiments that map 
possible molecular contacts between 16s 
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rRNA and the mRNA-tRNA complex in the 
A site. Chemical modification interference 
identified A1492 and A1493 in 16s  rRNA as 
required for mRNA-dependent tRNA binding 
in the A site. Mutations of these two univer- 
sally consewed nucleotides are lethal in 
Escher.ichin coli and decrease A-site binding 
affinity. The deleterious effects of A to G 
changes at these positions are compensated 
by 2'F modifications in the 1nRNA codon. 
The results support a model for ribosonlal 
decoding in which A1492 and A1493 recog- 
nize the helical structure of cognate codon- 
anticodon complexes in the A site. 

A selection scheme was developed to 
identify bases 111 16s  rRNA whose chemical 
~nodification disrupts A-site tRNA binding 
(Fig. 1A) (9). 3'-biotin-tRNAPhe (biotin- 
tRNAPhe) was directed to the A site by satu- 
rating the P site with E. coli tRNAmIet at the 
first two codons of phage T4 gene32 mRNA 
(10). In the absence of tRNAfi4et; biotin- 
tRNAP"" binds exclusively to the ribosonlal P 
site in a mRNA-dependent fashion (11). A- 
site or P-site complexes were isolated by 
means of capture of biotin-tRNAPhe by 
streptavidin beads (1 0). Specific selection of 
biotin-tRNAP'" was revealed by toeprint ex- 
periments (12) on captured 30s  subunits (Fig. 
1, A and B). biith saturating concentrations 
of tRNAmIet, only A-site co~nplexes of 
tRNAP'" were captured; in the absence of 
tRNAmIet, P-site co~nplexes were captured. 

The chemical groups in 16s  rRNA re- 
quired for high-affinity A-site tRNA binding 
to 30s  subunits were identified with this se- 
lection scheme. 30s  subunits that were com- 
petent for A-site or P-site biotin-tRNAPhe 
binding after chemical modification were 
captured with streptavidin beads (10, 13). 
Comparison of the ~nodification levels of all 
bases in 16s  rRNA in the total population and 
in the bound fraction of 30s  subunits revealed 
critical bases for A-site tRNA binding. Only 
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methylation of A1492 and A1493 N1 posi- 
tions interfered with tRNA binding at the A 
site (Fig. 1, C and D). A1492 and A1493 are 
a subset of the bases protected from chemical 
probes by A-site tRNA (6). A1408 forms an 
internal loop structure with A1492 and 
A1493, but N1 modification of A1408 did 
not interfere with A-site tRNA binding. In the 
presence of the arninoglycoside antibiotic 
paromomycin, methylation of G1494 (37) 
also interfered with A-site tRNA binding 
(Fig. ID); G1494 (37) is required for paro- 
momycin binding (8), indicating coupling of 
drug and tRNA affinity in the A site. No 
interference was observed in the 530 loop 
after modification with different reagents. 
This conserved loop is likely involved in 
A-site tRNA binding indirectly (14). 

To test the functional importance of 
A1492 and A1493, we expressed rRNA con- 
taining mutations at these two positions in E. 
coli (15). These changes included A1492G, 
A1492C, A1493G, A1493C, A1492G- 
A1493G, and A1492C-A1493C. All muta- 
tions at 1492 and 1493 confer lethal pheno- 
types when expressed in E. coli. Change of 
A1408, which is not universally conserved, to 
G produces functional ribosomes (16). Thus, 
A1492 and A1493 are essential for ribosome 
function in vivo. 

R E P O R T S  

The effects of 1492 and 1493 mutations 
on A-site tRNA binding were determined 
with the selection scheme described above 
(1 7). Mutant 30s subunits were purified as a 
mixture with wild-type subunits. Changes in 
P- or A-site tRNA binding affinity for the 
mutant will change the mutantlwild-type ratio 
after selection. G1492-G1493 and C 1492- 
C1493 mutations were deleterious to A-site 
tRNA binding (Fig. 2A) as were single mu- 
tations at 1492 and 1493. Mutations at posi- 
tion 1492 decreased only A-site tRNA bind- 
ing affinity, whereas those at 1493 or double 
mutations at 1492 and 1493 decreased both 
A- and P-site binding affinity. The effects on 
P-site binding were relieved by higher con- 
centrations of P-site tRNA. 30s subunits con- 
taining a G1492 or G1493 (or both) mutation 
showed decreased protections at the N1 po- 
sition of A1408 by A-site tRNA compared 
with that observed on the wild-type 30s sub- 
units (18). The results demonstrate decreased 
affinity for A-site tRNA binding in these 
mutants. 

The modification-interference and muta- 
tional data suggest rRNA chemical groups for 
interaction with the tRNA-mRNA complex in 
the A site. In the structure of a model RNA 
oligonucleotide, the N1 positions of A1492 
and A1493 point into the minor groove of the 

RNA (8). Methylation of the N1 positions of 
A1492 and A1493 and mutations to guanine 
remove a hydrogen bond acceptor, the ade- 
nine N1 position. The hydrogen bond donor 
likely resides in the mRNA. A-site tRNA 
binding is strictly mRNA dependent (19), and 
the 2'OH groups of the rnRNA are important 
for translation (20). Substitution of 2'OH 
groups with deoxynucleotides in the A-site 
codon decreases the binding affinity of the 
cognate tRNA but does not affect P-site 
tRNA binding (21). These data suggest that 
the 2'OH groups within the codon may inter- 
act with rRNA in the A site, possibly through 
hydrogen bonds to the N1 positions of A1492 
and A1493. 

Recognition of the codon-anticodon com- 
plex through adenine N1-2'OH interactions 
was tested experimentally by exchange for 
guanine NH 1 -2'F interactions (22). The en- 
ergetics of C-F-H-N hydrogen bonds are not 
known, but crystal structures have demon- 
strated their formation (23). The A-site selec- 
tion was applied to mixtures of wild-type and 
two double mutant ribosomes (G1492-G1493 
and C1492-C1493) bound to gene32 mRNA 
containing either 2'OH, 2'H, or 2'F uridines 
(24) (Fig. 2, A and B). The mutantlwild-type 
ratio reveals the relative effects of rRNA or 
mRNA changes on A-site binding affinity. 
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Fig. 1. (A) Isolation of chemically modified or mutant 305 ribosomal gene32 mRNA. (C) (Left) Base modifications of 165 rRNA that interfere 
subunits that retain their A-site tRNA-binding activity. Shine-Dalgamo with A-site tRNA binding. The autoradiograph shows a region of 165 
sequence (SD) and codons for methionine (AUC) and phenylalanine rRNA around position A1483 (control), A1492, and A1493.305 subunits 
(UUU) of T4 phage gene32 mRNA are indicated. Subunits whose binding were modified with DMS. Lanes 1 and 4 show primer extension of 
affinity is not affected are captured with magnetic streptavidin beads, unmodified 165 rRNA, lanes 2 and 5 show the total population of 
which bind t o  biotin-tRNAPhe. A-site complexes are formed by addition of modified 165 rRNA, and lanes 3 and 6 show the captured subpopulation 
tRNAfMet and biotin-tRNAPhe, whereas P-site complexes are formed by of modified 165 rRNA. A-site and P-site labels indicate A-site and P-site 
addition of only biotin-tRNAPhe. Stops of reverse transcription (RT) selection, respectively. The lanes labeled A, C, (3, and U are dideoxy 
caused by 305 subunit in the toeprint experiment are indicated by a small sequencing [anes. (Right) The graph shows quantification of interference 
and a Large arrow. (B) Autoradiograph showing the toeprint stops for of A-site tRNA binding by modification of N1 positions of A1492 and A1493. 
A-site and P-site complexes after capture with streptavidin beads. With Error ban are derived from at least three independent experiments. (D) 
excess tRNAfMet over 305 subunits, tRNAPhe binds exclusively to  the A Secondary structure of 165 rRNA showing critical nucleotides for A-site 
site, whereas in the absence of ~ R N A " ~ ~ ,  it binds t o  the P site. A and C tRNA binding to  305 subunits (a). Methylation of C1494 (N7) only inter- 
are dideoxy sequencing lanes. Numbers at right indicate positions on the fered with tRNA binding in the presence of 100 pM paromomycin (A). 
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Fig. 2. The A-site selection was applied to  mixtures of wild-type and two mutant ribosomes, 
G1492-GI493 or C1492-C1493 bound t o  gene32 mRNA containing either Z'OH, 2'F (A), or 2'H 
uridines (8). (A) Lanes 1 and 4 show the ratio of chromosomal and plasmid encoded 165 rRNA in 
the wild-type/mutant 305 subunit mixture before A-site selection. Lanes 2 and 5 and 3 and 6 show 
the 165 rRNA ratio observed with capture of 305 subunits with 2'OH or 2'F mRNA, respectively. 
(B) Lanes 1 and 3 show the ratio of the wild-type/mutant 305 subunits mixture before A-site 
selection. Lanes 2 and 4 show the 165 rRNA ratio observed with capture of 305 subunits with 2'H 
mRNA. (C) Bar graph representing the variations in the mutantlwild-type ratio after selection for 
A-site binding with mRNA containing either Z'OH, Z'F, or 2'H uridines. Error bars are derived from 
at least three independent experiments. (D) Autoradiograph showing kethoxal probing experiments 
with 305 subunits containing G1492-GI493 mutation. N1 osition of GI492 was protected from f kethoxal modification by binding of tRNAfMet, yeast tRNAP e, and 2'F mRNA. Lane 1, unmodified 
305 subunits; lane 2,305 subunits + 2'F mRNA; lane 3, 305 subunits + 2'F mRNA + tRNAfMet ; 
lane 4,305 subunits + 2'F mRNA + + tRNAPhe (200 pmol); lane 5,305 subunits + 2'F 
mRNA + tRNAfMet + tRNAPhe (500 pmog; Lane 6,305 subunits + 2'OH mRNA + ~ R N A ' ~ ~ ~ ;  lane 
7, 305 subunits + 2'OH mRNA + tRNA Met + tRNAPhe (200 pmol); and lane 8, 305 subunits + 
2'OH mRNA + ~ R N A ' ~ "  + (500 pmol). In all experiments, 10 pmol of 305 subunits was 
bound t o  30 pmol of 2'F or 2'OH gene32 mRNA and with or without 50 pmol of ~ R N A ' ~ ~ '  in the 
total volume of 12.5 FI. Modifications were monitored by primer extension from a DNA oligonu- 
clotide primer complementary t o  priming site V (76). 

As shown above, decreases in the mutantl 
wild-type ratio were observed for the G1492- 
G1493 and C1492-C1493 mutants with 2'OH 
&A. An increase in the mutantlwild-type 
ratio was observed only for the G1492- 
G1493 mutant with 2'F mRNAs (Fig. 2, A 
and C). Unlike with 2'OH mRNA, the 
C1492-C1493 mutant with 2'F mRNA and 
the G1492-G1493 and C 1492-C 1493 mutants 
with 2'H mRNA showed no change in the 
mutantlwild-type ratio after selection. Be- 
cause these mutations disrupt A-site tRNA 
binding with the 2'OH mRNA, the results 
suggest equally deleterious effects of rRNA 
mutations and mRNA backbone changes on 
A-site tRNA-binding. 30s subunits contain- 
ing a single G1492 or G1493 mutation gave 
results similar to those of the G1492-G1493 
mutant. 

The selection results with mutant ribo- 
somes and 2'F mRNA were confirmed by 
footprinting. Addition of tRNAmet and 
tRNphe with 2'F mRNA to G1492 and 
G1493 mutant ribosomes protected G1492 

N1 and N2 from kethoxal, whereas no pro- 
tection was observed with 2'OH mRNA. A 
similar protection at G1493 N1 and N2 was 
obtained with G1493 mutant ribosomes (18). 
These results strongly suggest that the N1 
position of adenines 1492 and 1493 contacts 
two 2' OH groups of an A-site bound mRNA 
codon. 

To ensure translation of all codon-anticodon 
pairs, the ribosome should contact the codon- 
anticodon complex in a sequence-independent 
manner (8). A1492 and A1493 contact 2'OH 
groups in the mRNA codon, which forms an 
A-form duplex with a cognate tRNA anticodon; 
similar recognition of base-pair shape occurs 
within the active site of DNA polymerase (25). 
The small energetic effects of rRNA and 
mRNA modifications on A-site tRNA afkity 
are consistent with the dominant contribution of 
the codon-anticodon interaction to A-site tRNA 
binding (3). Arninoglycoside antibiotics, which 
distort the structure of A1492 and A1493 and 
the surrounding helix (8), increase the affinity 
of A-site tRNAs by favoring contacts between 

Fig. 3. Schematic model for ribosome mRNA- 
tRNA interaction in the A site. (A) The N1 
positions of A1492 and A1493 in 165 rRNA can 
contact two 2'OH in the mRNA codon. The 
interaction between the cognate tRNA and 
mRNA places the codon in the proper orienta- 
tion t o  interact with the ribosomal A site and 
leads t o  efficient conformational signaling. (B) 
The interaction between near-cognate tRNA 
and mRNA leads t o  a mispair in the first two 
positions of the codon-anticodon helix, which 
distorts its structure, disrupting N1 contacts 
and decreasing conformational signaling. 

the codon-anticodon helix and these nucleotides 
(7). The interactions between rRNA and the 
codon-anticodon complex are probably more 
intricate than a pair of hydrogen bonds between 
A1492 and A1493 and the mRNA backbone 
(26) and may involve a network of interactions 
between rRNA and the codon-anticodon du- 
plex, as observed in group I introns (27). 

The backbone contacts described here 
suggest a molecular mechanism for ribosom- 
al discrimination between correct (cognate) 
and incorrect (near or noncognate) codon- 
anticodon pairs. The correct codon-anticodon 
duplex is a two-or three-base pair stretch of 
A-form helix. Molecular contacts between 
A1492 and A1493 and the codon-anticodon 
duplex (Fig. 3A) decrease the dissociation of 
cognate tRNA and may trigger additional 
conformational changes in the 530 loop (14) 
and 900 regions (28) of 16s rRNA, which are 
transmitted to the 50s subunit (3). Incorrect 
codon-anticodon duplexes contain mispairs 
within the first two positions that distort their 
A-form geometry and the positions of critical 
hydrogen bonding groups for recognition by 
A1492 and A1493. Disruption of rRNA con- 
tacts (Fig. 3B) increases the dissociation rate 
of incorrect tRNAs and decreases conforma- 
tional signaling rates (3). The ribosome thus 
distinguishes between different helical struc- 
tures formed by correct and incorrect codon- 
anticodon complexes during decoding. 
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repetitive activation of postsynaptic acetyl­
choline (ACh) receptors with iontophoresis 
of ACh (4) or by a brief elevation of postsyn­
aptic Ca2+ through release of caged Ca2+ 

(5). However, a phenomenon similar to LTP 
has not been reported in any neuromuscular 
system. In this work, we have identified con­
ditions under which repetitive activity can 
induce persistent enhancement of synaptic 
transmission at developing neuromuscular 
synapses in a cell culture preparation. 

We made simultaneous whole-cell perfo­
rated patch recordings from presynaptic spi­
nal neurons and postsynaptic myocytes in 
1-day-old Xenopus nerve-muscle cultures 
(6). We assayed the synaptic efficacy by 
measuring the mean amplitude of excitatoiy 
postsynaptic currents (EPSCs) evoked by test 
stimuli at a low frequency (0.05 Hz) (7). For 
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Electrical activity plays a critical role in shaping the structure and function of 
synaptic connections in the nervous system. In Xenopus nerve-muscle cultures, 
a brief burst of action potentials in the presynaptic neuron induced a persistent 
potentiation of neuromuscular synapses that exhibit immature synaptic func­
tions. Induction of potentiation required an elevation of postsynaptic Ca2+ and 
expression of potentiation appeared to involve an increased probability of 
transmitter secretion from the presynaptic nerve terminal. Thus, activity-de­
pendent persistent synaptic enhancement may reflect properties characteristic 
of immature synaptic connections, and bursting activity in developing spinal 
neurons may promote functional maturation of the neuromuscular synapse. 
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