the view that we are directly seeing the "epicyclic" periods general relativity predicts for the orbital motion of test particles: one related to the well-known general-relativistic precession of Mercury's orbit (but 10¹⁷ times faster because of the strong gravity) and another to the so-called "Lense-Thirring precession" of the orbital plane itself, caused by "frame-dragging," a phenomenon in which a spinning object drags space-time around it along with its spin (9). But there seems to be more to it than that. RXTE has discovered the first millisecond pulsar in an x-ray binary, a neutron star spinning with a 2.493919753-ms period (10), and has measured the approximate spins of another six neutron stars with periods of 2 to 4 ms (11). Comparison of these spins with the millisecond guasi-periods suggests that while the fastest of the two quasi-periods seen in each system originates in the orbital motion in the accretion disk, the slower one (still sometimes as fast as 1.2 msec) arises by a nonlinear interaction (a

PERSPECTIVES: PALEOECOLOGY

SCIENCE'S COMPASS

"beat") between the spin and the orbital motion. One model describes a pattern of orbital motion that could explain the observations in detail (7). A few more years of observations, more discoveries, and further high-precision measurements of the new phenomena will show which of these theories can be maintained and which must be abandoned.

RXTE's success has demonstrated that when probing the dynamics in strongly curved space-time, there is no substitute for size. It is the huge effective area of 0.7 m^2 of the main x-ray instrument onboard the satellite that gave Rossi the sensitivity to make the first direct measurements of orbital motion near collapsed stars. To fully exploit these discoveries and map out space-time near neutron stars and black holes, an instrument in the 10m² class will be required. Although the stream of new data from RXTE continues unabated and a second millisecond timing mission (the Naval Research Laboratory's Unconventional Stellar Aspect experiment on the

Plants and Temperature-CO₂ Uncoupling

Sharon A. Cowling

easurements of CO₂ and oxygen isotopes in polar ice caps indicate that for at least the past 420,000 years, temperature and CO₂ trends have been coupled; cooling generally coincides with low CO₂ and warming with higher CO_2 (1). This observation may lead us to believe that changes in CO₂ and temperature have been coupled throughout Earth's history and will continue to be coupled in the future. However, recent estimates (2-4)of CO₂ concentrations of 180 to 240 µmol mol⁻¹ for the mid-Cenozoic [between 17 and 43 million years ago (Ma)] are well below modern CO₂ concentration of 360 μ mol mol⁻¹, at a time when at least some regions are thought to have been up to 6°C warmer than today (5). Degassing of biogenic methane hydrates may have been responsible for abrupt mid-Cenozoic warming (6); however, increases in other greenhouse gases such as water may have also caused temperatures to rise without concurrent increases in atmospheric CO₂. Such temperature-CO₂ uncoupling, if confirmed by further studies, may influence our ideas about climate-forcing mechanisms (5) and paleoecosystem form and function.

Temperature- CO_2 uncoupling is predicted to have strong effects on the fundamental process of carbon fixation in most plants. There are two major classes of plants defined by their carbon fixation pathway— C_3 and C_4 . The primary enzyme for carbon fixation in C_3 plants—mostly

tropical grasses—is ribulose-1,5-bisphosphate (or Rubisco). Rubisco fixes O2 in competition with CO₂ in a process called photorespiration, which results in a loss of fixed carbon and reduced efficiency of C_3 photosynthesis. Reductions in atmospheric CO₂ and rises in temperature independently increase photorespiration (7). In a scenario where climate-CO₂ trends are uncoupled so that climate warming is not accompanied by increases in atmospheric CO₂, C₃ photosynthesis may be extremely low because of high rates of photorespiration. In contrast, because the primaArgos satellite) was just launched successfully, x-ray astronomers are already considering the new solid-state technologies by which such a "relativity explorer" might be realized.

References and Notes

- H. V. Bradt, R. E. Rothschild, J. H. Swank, Astron. Astrophys. 97, 355 (1993).
- 2. J. H. Taylor and J. M. Weisberg, *Astrophys. J.* **345**, 434 (1989).
- 3. M. van der Klis *et al., ibid.* **469**, L1 (1996); T. E. Strohmayer *et al., ibid.*, p. L9.
- M. van der Klis, preprint available at xxx.lanl.gov/abs/ astro-ph/9812395.
- E. H. Morgan et al., Astrophys. J. 482, 993 (1997); R. A. Remillard et al., ibid. 517, L127 (1999).
- 6. W. Kluzniak et al., ibid. **358**, 538 (1990)
- M. C. Miller et al., *ibid.* **508**, 791 (1998).
 P. Kaaret et al., *ibid.* **480**, L27 (1997); W. Zhang et al., *ibid.* **482**, L167 (1997); W. Zhang et al., *ibid.* **500**, L171 (1998); P. Kaaret et al., *ibid.* **520**, L37 (1999).
- L. Stella, M. Vietri, W. Cui, *ibid*. **492**, L59 (1998); W. Cui *et al.*, *ibid.*, p. L53; L. Stella and M. Vietri, *Phys. Rev. Lett.* **82**, 17 (1999).
- R. Wijnands and M. van der Klis, *Nature* **394**, 344 (1998); D. Chakarbarty and E. H. Morgan, *ibid.*, p. 346.
- 11. T. E. Strohmayer et al., Nucl. Phys. B 69, 129 (1998).
- M. v. d. K. gratefully acknowledges hospitality at the Aspen Center for Physics.

ry carboxylating enzyme in C_4 plants does not react with O_2 , C_4 plants can out-compete C_3 in low CO_2 and high temperature environments (8).

Our present understanding of how C_3 plants respond to changes in temperature and CO_2 can be used to constrain lowend CO_2 estimates made from geological data, particularly for the Cenozoic before 15 Ma, when terrestial ecosystems predominantly contained plants with the C_3 photosynthetic pathway. Because the paleorecord indicates that land plants survived and thrived throughout the Cenozoic, any geologically predicted CO_2 -

Experiment	CO2 (µmol/mol)	Temperature (°C)	Photorespiration (percent)	 Net photosynthesis (μmol/m²s)
Modern control	360 360	25 32	11 18	17 11
LGM [†]	200 200	25 – 5 32 – 5	15 24	10 8
Miocene [‡]	260 260 260 260	25 + 2 25 + 5 32 + 2 32 + 5	18 22 29 35	11 9 6 4
	220 220 220 220 220	25 + 2 25 + 5 32 + 2 32 + 5	21 26 34 41	9 7 4 3
Eocene [§]	385 385 385 385 385	25 + 2 25 + 5 25 + 2 32 + 5	12 15 19 24	16 14 10 7
	180 180 180 180	25 + 2 25 + 5 32 + 2 32 + 5	26 32 41 50	7 5 3

The author is in the Climate Impacts Group, Institute of Ecology, Lund University, S-223 62 Lund, Sweden. E-mail: Sharon.Cowling@planteco.lu.se

temperature combination that promotes extremely low plant carbon (that is, very high photorespiration) may be unlikely from a biological perspective.

Low-end mid-Cenozoic CO₂ estimates provided by Pagani *et al.* [220 µmol mol⁻¹ (2)] and Pearson and Palmer [180 µmol mol⁻¹ (3)] can be assessed physiologically with photosynthetic modeling experiments (9, 10). The magnitude and spatial extent of mid-Cenozoic warming remain uncertain, and therefore conservative (2°C) and high (5°C) climate warming scenarios have been considered here (11).

Low-end CO₂ estimates of 220 μ mol mol⁻¹ (2) and below (3) are not biologically supported because simulated photorespiration rates in low latitudes under minimal 2°C warming are over 30% of gross photosynthesis, with carbon assimilation rates as low as 4 $\mu mol~m^{-2}~s^{-1}$ and below (see the table). The same conclusion can be drawn from low- and midlatitude data under simulated extreme (5°C) climate warming (see the table). Carbon-limiting environmental stresses such as drought, nutrient limitations, plant-plant competition, and herbivory may also have been present, depressing plant carbon balance even further. It therefore seems very unlikely that mid-Cenozoic atmospheric CO₂ could have dropped to 220 μ mol mol⁻¹ and below.

The upper CO₂ limit predicted for the Eocene (around 43 Ma) by Pearson and Palmer (3) results in modeled photosynthetic rates that are reasonably close to modern-day controls (see the table). However, the upper CO₂ limit predicted for the Miocene (around 17 Ma) by Pagani et al. (2) may, or may not, be plausible from a biological perspective. Because climate and CO₂ at the Last Glacial Maximum resulted in substantial vegetation changes arising from altered plant carbon and water balance (12), then the lower photosynthetic rates simulated under predicted Miocene CO_2 concentrations of 260 µmol mol⁻¹ (2) (see the table) indicate that similar, or even greater, changes to global vegetation patterns should have occurred.

The paleorecord may already contain such a signal, suggesting that a low-end CO_2 estimate of 260 µmol mol⁻¹ for 17 Ma (2) may not be so biologically unreasonable. Although some data indicate evolution of the C₄ photosynthetic pathway before the Miocene (13), evidence of widespread presence of C₄ photosynthesis dates from about 15.5 Ma onward (14). Stable carbon isotope data from fossil her-

SCIENCE'S COMPASS

bivore teeth indicate a substantial expansion of C₄-dominated grasslands in tropical Asia, North America, South America, and Africa between 7 and 5 Ma (15). Theories on the environmental conditions that could have facilitated C₄ plant evolution include mid-Cenozoic reductions in CO₂ below a threshold of 500 µmol mol⁻¹ (16) and increased Miocene aridity (17). Climate-CO₂ uncoupling, however, could play a more direct role in the selection and propagation of C₄ traits in land plants because such events would have resulted in even greater carbon and moisture stress (through high

Photosynthetic response to potential future temperature-CO2 scenarios. The solid line illustrates a perfectly coupled CO₂-temperature increase scenario, where assimilation remains about constant with increasing temperature. Curves above this reference line are termed "positive uncoupling" because temperature increases lag CO₂ increases, allowing assimilation rates to increase with rising temperature. Curves below the reference line are termed "negative uncoupling" because temperature increases surpass those in atmospheric CO₂, with assimilation rates decreasing with higher temperatures. Scenario 4 represents temperature increases at constant CO₂ (360 µmol mol⁻¹). All CO₂ increase scenarios were started at CO₂ concentrations of 360 µmol mol⁻¹.

photorespiratory carbon losses) than low CO_2 alone, thus heightening plant susceptibility to increased aridity. The effects of temperature- CO_2 uncoupling on plant-carbon balance may also explain why Eocene rates of herbivory seem to have been higher than during the Paleocene (18), a period for which CO_2 -temperature uncoupling events have yet to be identified. Low carbon assimilation rates could have led to a reduction in the production of secondary carbohydrates such as phenols and other herbivore-defense compounds, rendering Eocene leaves more palatable for herbivores than Paleocene leaves.

Understanding the role of temperature- CO_2 uncoupling for past ecosystems is

important for predicting future vegetation-climate interactions. If temperatures rise by 1°C for every 227 (scenario 1), 136 (scenario 2) and 76 μ mol mol⁻¹ (scenario 3) increase in atmospheric CO_2 (19), assimilation rates will continue to rise, indicating the absence of negative uncoupling effects on plant carbon (see the figure). In all three scenarios, C_3 plants will be able to respond to increases in atmospheric CO₂ without having to allocate excessive energy and essential plant nutrients for biochemical adjustments to higher growth tempertures (see the figure), reconfirming similar conclusions made by Long (20) nearly a decade ago. But maybe we should be less concerned about rising CO₂ and rising temperatures and more worried about the possibility that future atmospheric CO₂ will suddenly stop increasing, while global temperatures continue rising.

References and Notes

- 1. J. R. Petit *et al., Nature* **399**, 429 (1999).
- M. Pagani, M. A. Arthur, K. H. Freeman, Paleoceanography 14, 273 (1999).
- 3. P. N. Pearson and M. R. Palmer, *Science* **284**, 1824 (1999).
- 4. R. A. Berner, Am. J. Sci. 294, 56 (1994).
- R. A. Kerr, *Science* 284, 1743 (1999).
 S. Baines, R. M. Corfield, R. D. Norris, *Science* 285, 724 (1999).
- A. Brooks and G. D. Farquhar, *Planta* 165, 397 (1985).
 R. W. Pearcy and J. Ehleringer, *Plant Cell Environ.* 7, 1
- (1984).
- Equations describing the colimitation of C₃ photosynthesis by Rubisco and electron transport are described by A. Haxeltine and I. C. Prentice [*Clobal Biogeochem. Cycles* 10, 693 (1996)]. Michaelis-Menton constants were calculated with Q₁₀ functions from G. J. Collatz, J. T. Ball, C. Grivet, and J. A. Berry [*Agric. For. Meteorol.* 54, 107 (1991)]. Solubility functions for CO₂ and O₂ were modeled from (20).
- 10. G. D. Farquhar, S. von Caemmerer, J. A. Berry, *Planta* **149**, 78 (1980).
- In the 2°C and 5°C scenarios, mid-latitude regions were assigned base growing season temperatures of 25°C, and temperatures of 32°C were used for lowlatitude regions.
- I. C. Prentice, P. J. Bartlein, T. Webb III, Ecology 72, 2038 (1991); D. R. Cole and H. C. Monger, Nature 368, 533 (1994); S. A. Cowling, Global Ecol. Biogeogr. Lett., in press; S. A. Cowling and M. T. Sykes, Quat. Res., in press.
- W. L. Crepet and G. D. Feldman, *Am. J. Bot.* **78**, 1010 (1991); M. M. M. Kuypers, R. D. Pancost, J. S. Sinninghe Damaste, *Nature* **399**, 342 (1999).
- M. E. Morgan, J. D. Kingston, B. D. Marino, Nature 67, 162 (1994); J. D. Kingston, B. D. Marino, A. Hill, Science 264, 955 (1994).
- J. Quade, T. E. Cerling, J. R. Bowman, *Nature* 342, 163 (1989); T. E. Cerling, Y. Wang, J. Quade, *ibid.* 361, 344 (1993); T. E. Cerling *et al.*, *ibid.* 389, 153 (1997).
- J. R. Ehleringer, R. F. Sage, L. B. Flanagan, R. W. Pearcy, *Trends Ecol. Evol.* 6, 95 (1991); J. R. Ehleringer and T. E. Cerling, *Oecologia* 112, 285 (1997).
- M. Pagani, K. H. Freeman, M. A. Arthur, Science 285, 876 (1999).
- P. Wilf and C. C. Labandeira, *ibid.* 284, 2153 (1999).
 These CO₂-temperature increase scenarios correspond to the Intergovernmental Panel on Climate Change's (IPCC) low, intermediate, and high estimate of climate warming expected by the year 2100. See *Climate Change 1995: The Science of Climate Change* (Cambridge Univ. Press, Cambridge, 1995).
- 20. S. P. Long, Plant Cell Environ. 14, 729 (1991).