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Altered Cochlear Fibrocytes in a 
Mouse Model of DFN3 

Nonsyndromic Deafness 
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DFN3, an X chromosome-linked nonsyndromic mixed deafness, is caused by 
mutations in t he  BRN-4 gene, which encodes a POU transcription factor. Brn- 
4-deficient mice were created and found t o  exhibit profound deafness. N o  gross 
morphological changes were observed in the  conductive ossicles or cochlea, 
although there was a dramatic reduction in endocochlear potential. Electron 
microscopy revealed severe ultrastructural alterations in cochlear spiral liga- 
ment fibrocytes. The findings suggest tha t  these fibrocytes, which are mes- 
enchymal in origin and for which a role in potassium ion homeostasis has been 
postulated, may play a critical role in auditory function. 

Hereditary deafhess affects about 1 in 2000 characterized by a conductive hearing loss, a 
children and 70% of the cases occur nonsyn- flow of perilyrnph during the opening of the 
droinically (in the absence of other associated stapes footplate, and progressive sensorineural 
clinical features). DFIi3, an X chromosome- deafness ( I ) .  Genetic studies have shown that 
linked nonsyndromic deafhess, is clinically DFN3 is caused by mutations in BRN-4I'RHSZI 

POU3F4, which encodes a POU transcription 
' ~ e ~ a r t m e n t  o f  Cell Biology, The Cancer Institute, factor (2). The role of Bin-4 in the development 
Japanese Foundation for  Cancer Research, 1-37-1 of fullction, however, remaills ullclear, 
Kami-ikebukuro, Toshima-ku, Tokyo 170-8455, Japan. 
'Department of Otorhinolaryngology, Tohoku Univer- Mutations in BW-3.I:BfiV-3c,  which encodes 
si ty  school  of  Medicine, 1 -1  Seiryo-machi, ~ o b a - k u ,  another POL factor, are responsible for hered- 
Sendai 980-8574, Japan. ' C R E S T , - J ~ ~ ~ ~  Science and 
Technology Corporation, 4-1-8 Motomachi, Kawagu- 
chi 332-0012, Japan. 4Department o f  Molecular Ce- 
netics, Tohoku University School o f  Medicine, 2 - 1  
Seiryo-machi, Aoba-ku Sendai 980-8575, Japan. 'De- 
partment of Pharmacology, Faculty o f  Medicine, Uni- 
versity o f  Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 
113-8655, Japan. 6Department o f  Anatomy, Kansai 
Medical University, 10-15 Fumizono-cho. Moriguchi- 
shi, Osaka 570-8506, Japan. 

*These authors contributed equally t o  this work. 
?To w h o m  correspondence should be addressed. E- 
mail: tnoda@ims.u-tokyo.ac.jp 

itaiy nonsyndromic deafness, DFIiA 15, and 
targeted mutagenesis in inice has suggested that 
the protein plays a critical role in differentiation 
of hair cells in the inner ear (3) .  During devel- 
opment. Bm-4 is expressed tl~oughout the in- 
ner ear in the inesenchyine of both the cochlear 
and vestibular aspects but not in tissues derived 
from neuroepithelial or neuronal cells ( 4 ) .  

To analyze Brn-4 function in vivo and to 
elucidate possible mechanisms underlying 
DFN3, we generated Bm-4-deficient inice by 
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targeted mutagenesis. A targeting vector was 
constructed that enabled us to replace a 2-kb 
genomic sequence containing the entire cod- 
ing region of Brn-4 with a pgk-neo (neomy- 
cin-resistance gene driven by phosphoglycer- 
ate kinase gene promoter) cassette (Fig. 1A) 
(5). Homologous recombination was con- 
firmed in 1 of 330 G418-resistant embryonic 
stem (ES) cell clones (Fig. 1B). This clone 
was injected into blastocysts from C57BLl6 
mice and the resulting chimeras were mated 
to C57BLl6 mice. Germ line transmission of 
the mutant Brn-4 allele was confirmed by 
Southern blotting. Mating of heterozygous F, 
females with male chimeras yielded homozy- 
gous males and females. Gel mobility-shift 
assays (6) indicated that the homozygous 
mutants had no DNA binding activity attrib- 
utable to Bm-4 (Fig. 1C). Mice deficient for 

Bm-4 appeared to be normal and were fertile. 
To assess the auditory function of Bm-4- 

deficient mice, we measured the auditory brain- 
stem response (ABR) (7). Wild-type male mice 
showed a typical ABR waveform and waves I 
to V were clearly identified above the 30-deci- 
be1 (dB) sound pressure level (SPL). In con- 
trast, Bm-4 mutant male mice showed an ABR 
response only with stimuli above a 90-dB SPL 
(Fig. 2A). At 11 weeks of age, the average 
ABR threshold in wild-type mice was 23-dB 
SPL for males and 25- SPL for females, 

Fig. 1. Targeted inactivation of the Brn-4 gene. 
(A) Diagram of the targeting vector and wild-type 
and mutant alleles. Brn-4 open reading frame is 
indicated by the black box; exon is indicated by 
the open box. neo, neomycin-resistance gene 
driven by phosphoglycerate kinase gene promoter 
(pgk-neo); DTA, diphtheria toxin A-chain gene; A, 
Acc I; E, Eco RI; H, Hind Ill; B, Bam HI; Xb, Xba I. (B) 
Southern blot analysis of recombinant (#9), ran- 
domly integrated (#18), and wild-type (W) ES 
cell clones by Xba I digestion. Map locations of 
probes a and bare shown in (A). The mutant allele 
was detected as a 4.4-kb fragment. Homologous 
recombinant ES clone (#9) shows only the mu- 
tant allele band because mouse Brn-4 is located 
on the X chromosome. (C) DNA binding activity 
of Bm-4 protein in brain extracts at postnatal day 
0 from wild-type male (W), heterozygous female 
(E), and homozygous mutant female (0) mice, 
analyzed by gel-shift assay. An extract of Brn-4- 
transfected NIH 3T3 cells and an assay mix with- 
out cell extract (probe) were used as controls. 
Arrowhead indicates band shifted by Bm-4 bind- 
ing. Arrows indicate bandshifts caused by Bm-1 
(upper) and Brn-2 (lower). 

L 70 - 
SPL (dB) 1 2 c 1 v  

2 rns 

whereas the average in Bm-4-deficient mice 
was 89- SPL for males and 92-dB SPL for 
homozygous females, which is indicative of 
profound deafhess (Fig. 2B). The ABR consist- 
ed of multiple waves, corresponding to succes- 
sive activation of nuclei transmitting neural sig- 
nals from the periphery to the central region. 
Thus, the lack of wave I at 30- to 70-dB SPL in 
mutant mice suggested that the cause of deaf- 
ness resided in neurons of the spiral ganglion or 
more peripheral regions, including the cochlea 
and conductive apparatus. Bm-4-deficient mice 

Male Female 

Fig. 2. ABRs of wild-type and Brn-4-deficient mice. (A) ABR waveforms of wild-type (+/Y) and 
Brn-4 mutant (-/Y) males at 11 week. of age, measured at 20- to  50-dB SPL and 70- to  100-dB 
SPL, respectively. (B) Scatterplots of ABR thresholds for 11-week-old male and female mice. 
Horizontal bars denote averages for each group. +/Y and +I+, wild type; -I+, heterozygote; -/Y 
and -I-, Brn-4-deficient mice. 

Fig. 3. Histological analysis of the cochlear duct of Brn-4 mutants and expression of Brn-4 in the 
cochlear d u d  of mice. (A) Morphology of the basal turn of the cochlea of an 11-week-old wild-type 
male. (B) Basal turn of the cochlea of an 11-week-old Brn-4 mutant male. Scale bars = 100 pm. 
(C) In situ hybridization analysis of Brn-4 mRNA expression. Cochlear section of a wild-type female 
at postnatal day 0 is shown. Brn-4 mRNA expression is evident as a blue precipitate. The following 
structures are indicated: spiral ligament (SLg), suprastrial zone (ssz), Reissner's membrane (RM), 
stria vascularis (filled arrowheads), organ of Corti (open arrowheads), spiral limbus (SLm), spiral 
ganglion (SG). (D and E) Images at higher magnification showing the organ of Corti of a wild-type 
male (D) and a Brn-4 mutant male (E). IH, inner hair cells; OH, outer hair cells; TM, tectorial 
membrane. Scale bars = 10 pm. 
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could swim normally, which indicates that they 
had a normal vestibular function. 

To determine whether the mutant mice 
had an impaired conductive apparatus, we 
examined the middle ear structure of 11- 
week-old males under a dissecting micro- 
scope. The structures of the tympanic mem- 
brane and an ossicular chain-consisting of 
malleus, incus, and stapes-appeared to be 
normal in mutant mice. Intact structures were 
confirmed by histological analysis (8). Al- 
though human DFN3 patients showed stapes 
fixation (I), the flexibility of auditory ossicle 
junctions and the mobility of stapes foot- 
plates of the mutant mice were indistinguish- 
able from those of wild-type mice. 

The absence of gross defects in the middle 
ear organs suggested that the primary lesion 
resided in the inner ear cochlear system or in 
the auditory nerves. Analysis of the inner ear 
structures of I I-week-old Brn-4-deficient male 
mice by light microscopy (9) revealed the nor- 
mal appearance of the cochlear duct, including 
the organ of Corti, the spiral ganglion, and the 
stria vascularis (Fig. 3, A and B). The organ of 
Corti had a well-differentiated structure consist- 
ing of inner and outer hair cells and several 
types of supporting cells, including pillar cells 
and Deiters' cells resting on the basilar mem- 
brane (Fig. 3, D and E). The tectorial membrane 

was also normal in the mutant mice. Thus, 
although Brn-4 is highly expressed in the de- 
veloping inner ear (4), we detected no gross 
abnormality of the inner ear in the Brn-Cdefi- 
cient mice. 

We next analyzed Brn-4 mRNA expres- 
sion in the inner ears of wild-type neonatal 
mice by in situ hybridization (10) (Fig. 3C). 
The highest level of expression was detected 
in the spiral ligament, a connective tissue 
structure containing three types of fibrocytes 
(types 1, 2, and 3) (11) as predominant cel- 
lular components. Type 1 fibrocytes occupy 
the region beneath the stria vascularis. Type 2 
fibrocytes are found in the suprastrial zone 
and the central area of the spiral ligament 
beneath the spiral prominence. Type 3 fibro- 
cytes form a cell layer attached to the otic 
capsule. Our results suggested that all three 
fibrocyte types expressed Brn-4. Reissner's 
membrane, the edge of the spiral limbus, and 
the region between the spiral limbus and the 
spiral ganglion also contained Brn-4 mRNA 
but in lower amounts than the spiral ligament. 
The organ of Corti (including the inner and 
outer hair cells), the stria vascularis, the spiral 
limbus, and the spiral ganglion were negative 
for Brn-4, which suggests that Brn-4 expres- 
sion is limited to cells of mesodermal origin. 

Analysis of fibrocyte ultrastructure by trans- 

Fig. 4. Electron microscopic features of the cochlear duct of Bm-4 mutants (-/Y) (E-H) and wild-type 
mice (+/Y) (A-D) at 11 weeks of age. (A and E) TEM analysis of the suprastrial zone of the spiral 
ligament. TZ, type 2 fibrocyte. Scale bars = 2 Fm. (B and F) Magnification of rectangular regions in (A) 
and (E), respectively. Arrowheads indicate plasma membrane projections. Note the dramatic difference 
in cell shape and the reduced number of mitochondria (Mt) in the mutant. (C and C)  TEM analysis of 
fibrocytes behind the stria vascularis. Tl,  type 1 fibrocyte; EF, extracellular filament. Scale bars = 2 Fm. 
@and H) Scanning electron microscopy of hair cell stereocilia, showing normal shape and arrangement 
in both Brn-4 mutant and wild-type mice. IH, inner hair cell; OH, outer hair cell Scale bars = 10 Fm. 

mission electron microscopy (TEM) (12) re- 
vealed remarkable pathological changes in the 
spiral ligament fibrocytes in all turns of the 
cochlea of 11-week-old Brn-4-deficient mice. 
In wild-type mice, type 2 fibrocytes in the 
suprastrial zone had a highly convoluted shape 
with numerous cytoplasmic extensions (Fig. 4, 
A and B) and showed an abundance of mito- 
chondria (Fig. 4B). In mutant mice, these fibro- 
cytes had markedly fewer cytoplasmic exten- 
sions and both the volume of cytoplasm and the 
number of mitochondria were dramatically re- 
duced (Fig. 4, E and F). Type 1 fibrocytes 
filling the area beneath the stria vascularis also 
had few mitochondria (Fig. 4G) and the sur- 
rounding extracellular matrix was extremely 
sparse compared with wild-type mice (Fig. 4C). 
Further analysis of Bm-4 mutants by transmis- 
sion and scanning electron microscopy revealed 
no pathological features in other structures of 
the inner ear, including inner and outer hair 
cells (Fig. 4, D and H), the stria vascularis, the 
spiral ganglia, and the auditory nerve (13). 

According to a recent hypothesis (1 I), type 
2 fibrocytes may take up perilymphatic K+ ions 
by means of their Na+,Kf -adenosine triphos- 
phatase (ATPase) activity. These Kf ions may 
then be transported to the stria vascularis by 
type 1 fibrocytes through gap junctions and 
ultimately may be secreted into the endolymph; 
this would contribute to generation of the en- 
docochlear potential (EP), a resting potential 
maintained in the extracellular fluid that bathes 
the upper surface of mechanosensory hair cells. 
Because the pathological findings in the spiral 
ligament fibrocytes described above strongly 
suggested fibrocyte dysfunction in Brn-4-defi- 
cient mice, we measured EP values in the mu- 
tant mice (14). In I I-week-old wild-type mice 
the average value was 85 mV for males and 91 
mV for females, whereas in the mutants it was 
only 38 mV for males and 39 mV for females 
(Fig. 5). This mutant phenotype suggests that 
Brn-4 plays a critical role in the generation or 
maintenance of the EP by controlling develop- 
ment of fibrocytes along the cochlear duct. Any 

Female 

N -I+ -I- 

Fig. 5. Decreased EP in Brn-Cdeficient males 
and females at 11 weeks of age. -/Y, male 
mutant; +/Y, male wild-type control; -I-, 
female mutant; -I+, female heterozygote 
control. Horizontal bars denote averages for 
each group of mice. 
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abnonllality of fibrocytes in the spiral liganlent 
~vould be expected to dismpt Kt tr.a~lspol-t. 
leading to depression of the EP. A reduced EP 
would explain the elevation of ABR thresholds 
in m~~tan t s  as the receptor potential of hair cells 
depends on the magnih~de of the EP (13). The 
idea that fibrocytes contribute to the generatloll 
or maintenance of the EP is thus strongly sup- 
ported by our present finding. 

In the past 5 years, 13 lurnan genes have 
been identified that are responsible for heredi- 
taly nonsyndrornic deafness (16).  Mouse mod- 
els harboring mutations in the homologous 
genes are available for Bril 3.1;Briz-3c and for 
the myosin VIIA (shaker 1) and rnyosin XV 
(shaker 2) genes. In all three of these models. 
the mice suffer sellsolineural deafness because 
of defects in sensor) hair cells of the inner ear. 
Our analysis of Bm-4-deficient mice has indi- 
cated that cochlear fibrocytes. ~vhich are non- 
sensoty mesenchymal cells specific to the co- 
chlear duct. tnay also play an important role in 
audit017 function. Given the high level of Bix-4 
expression in fibrocq.tes. the pathological 
changes tnay be a cell autonornous conse- 
quence of Bm-4 deficiency. as is the case for 
other rnelllbers of the POU transcliption factor 
family (1  7). Because the number of fibrocq~es 
in Br11-4-deficient mice is similar to that in 
u-ild-type mice (9) .  Bm-4 may be essential for 
the differentiation or fi~nction of fibrocytes but 
not for their survival. The fibrocytes are rich in 
Nat,Kp-ATPase and the gap junction protein 
connexin 26 (11).  u-hich are thought to be 
essential for I<+ transport, and mu~tations in the 
GJB2 gene encoding co~ulexin 26 have been 
sholm to be responsible for DFb'B1, another 
nollsyndromic deafness (18).  Seither GJB2 nor 
the Nat,Kt-ATPase gene. however, appears to 
be a target of Bm-4-mediated regulation, be- 
cause Bm-4-deficient fibrocytes shou-ed no 
dramatic changes in the expression of either 
gene. Identification of Bi-11-4 target genes in 
cochlear fibrocq~es may help to elucidate the 
role of these cells in audit017 filnction. 
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Long-Term Depression in 
Hippocampal Interneurons: 

Joint Requirement for Pre- and 
Postsynaptic Events 

Fernanda L a e z ~ a , ' - ~  James J. Doherty,' Raymond Bingledine2* 

Long-term depression (LTD) is a well-known form of synaptic plasticity of 
principal neurons in the mammalian brain. Whether such changes occur in 
interneurons is still controversial. CA3 hippocampal interneurons expressing 
Ca2--permeable AMPA receptors exhibited LTD after tetanic stimulation of CA3 
excitatory inputs. LTD was independent of NMDA receptors and required both 
C a 2  influx through postsynaptic AMPA receptors and activation of presynaptic 
mCluR7-like receptors. These results point to  the capability of interneurons to 
undergo plastic changes of synaptic strength through joint activation of pre- 
and postsynaptic glutamate receptors. 

LTD and long-term potentiation (LTP) are hippocampus. neocortex. and cerebellum ( I .  
activity-dependent forms of synaptic plastic- 2) .  Most studies related to LTD and LTP have 
ity that have been extensively sh~died in the examined excitatory synapses onto principal 

neurons. However, it is irnpoltant to lcnolv 

7Neuroscience Program, of whetller the same types of long-terlll plastic- 
pharmacology, E~~~~ university ~ ~ ~ h ~ ~ l  of pjedicine, ity occur at excitatory synapses onto inter- 
At lanta,  G A  30322,  USA. neurons. It is clear that long-term plasticity at 
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mail: rdingledine@pharm.emory.edu resulting fronl plasticity of excitatory inputs 
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