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Dual Function of the 
Selenoprotein PHGPx During 

Sperm Maturation 
Fulvio ~rs in i , '  Sabina Heim,' Michael Kiess,' Matilde ~aiorino, '  

Antonella Roveri,' Josef Wissing,' Leopold Flohe3* 

The selenoprotein phospholipid hydroperoxide glutathione peroxidase (PHGPx) 
changes its physical characteristics and biological functions during sperm mat- 
uration. PHGPx exists as a soluble peroxidase in spermatids but persists in 
mature spermatozoa as an enzymatically inactive, oxidatively cross-linked, 
insoluble protein. In the midpiece of mature spermatozoa, PHGPx protein 
represents at  least 50 percent of the capsule material that embeds the helix of 
mitochondria. The role of PHGPx as a structural protein may explain the 
mechanical instability of the mitochondrial midpiece that is observed in sele- 
nium deficiency. 

Selenium is essential for male fertility in ro- 
dents and has also been implicated in the fer- 
tilization capacity of speimatozoa of livestock 
and humans (I). Selenium deficiency is associ- 
ated with impaired speim motility, structural 
alterations of the midpiece, and loss of flagel- 
lum (I). However, three decades after the dis- 
covery of selenium as an integral constituent of 
redox enzymes (2),  the molecular basis of the 
relationship of the essential trace element and 
male fertility remains obscure. The selenopro- 
tein PHGPx (Enzyme Coinmissioil number 
1.1 1.1.12) is abundantly expressed in sperrna- 
tids and displays high activity in postpubertal 
testis (3). In mature spermatozoa, however; se- 
lenium is largely restricted to the mitochondrial 
capsule, a keratin-like matrix that embeds the 

'D ipartmento di Chimica Biologics, Universita di 
Padova, Viale G. Colombo 3, 1-35121 Padova, Italy. 

helix of mitochondria in the speim inidpiece 
(4). A "speim mitochondiia-associated cys- 
teine-rich protein (SMCP)" (5) had been con- 
sidered to be the seleiloprotein accounting for 
the selenium content of the mitochondrial cap- 
sule (4-6). The rat SMCP gene, however, does 
not contain an in-frame TGA codon (7) that 
would enable a selenocysteine incorporation 
(8). In mice; the three in-frame TGA codons of 
the SMCP gene are upstream of the translation 
start (5). SI\/ICP can therefore no longer be 
considered as a selenoprotein. Instead, the "mi- 
tochondrial capsule selenoprotein (I\/ICS);" as 
SMCP was origiilally referred to (4-7), is here 
identified as PHGPx. 

Routine preparations of rat spenn mito- 
chondrial capsules (9) yielded a fraction that 
was insoluble in 1% SDS containing 0.2 mM 
dithiothreitol (DTT) and displayed a vesicu- 
lar appearance in electron microscopy (Fig. 

A A A. - 
'National Research Centre for  Biotechnology (GBF), 1 ~ ) .  vesicles readily disintegrated upon 
Mascheroder W e g  1, D-38124 Braunschweig, Germa- 
ny. 3Department of Biochemistry, Technical Universi- 

exposure to 0.1 M mercaptoethanol (Fig. 1B) 

t v  o f  Braunschweig Mascheroder Wep 1 .  D-38124  and beca1lle fully soluble guanidine- 
u. - .  

Braunschweig, Germany. HC1. When the solubilized capsule material 
*To w h o m  correspondence should be addressed. E-  was subjected to polyacl~lamide gel electro- 
mail: lfl@gbf.de phoresis (PAGE); four bands in the 20-kD 
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region were detected (Fig. lC, left lane). 
Protein imrnunoblotting (10) revealed that the 
most prominent band reacted with PHGPx 
antibodies (Fig. lC, right lane). NH2-terminal 
sequencing (I  I)  of the 21-kD band (46% of 
total protein content according to stain inten- 
sity) revealed that it consisted of at least 95% 
pure PHGPx. We therefore investigated the 

Fig. 1. Presence of PHCPx in the 
mitochondrial capsule of rat sper- 
matozoa. (A) Mitochondria1 cap- 
sule prepared by trypsination and 
centrifugation (4, 9). (B) The same 
preparation as shown in (A) but 
after exposure to  0.1 M 2-mercap- 
toethanol for 15 min at 4OC. Con- 
tamination of the capsule material 
by mitochondria is evident from 
the presence of mitochondrial 
ghosts (arrowhead). Scale bars, 0.3 
pm. (C) SDS-PACE of proteins ex- 
tracted from capsule material by 
treatment with 0.1 M 2-mercapto- 
ethanol, 0.1 M tris-HCI (pH 7.5). 
and 6 M guanidine-HCL. Left lane is 
stained with colloidal gold; right 
protein immunoblotting (70). 

composition of the mitochondrial capsules by 
two-dimensional (2D) electrophoresis (12) 
(Fig. 2A) followed by microsequencing (13) 
or matrix-assisted laser desorption ionization 
time-of-flight (MALDI-TOF) analysis (14) 
for identification (Fig. 2B). The spot migrat- 
ing with an apparent molecular mass of 21 
kD and focusing at a pH near 8 (spot 3) 

Lane demonstrates presence of 
c kD 

PHCPx by - 90 
- 67 

Fig. 2. Analysis of the corn- . .  ..-- 
position of the rnitochondrial 
capsule of spermatozoa. (A) 
Two-dimensional electro- 
phoresis of purified dissolved PI 5 

7 9 
v 

capsule material Proteins MW 
v v 

were focused in a linear pH 13 
I I 0 

gradient from 3 to 10 (hori- 
zontal direction), then re- 
duced, amidocarboxymethy- 8 9 
lated, subjected to SDS elec- o o 
trophoresis, and stained with 
Coomassie blue. MALDI-TOF kD , 4 3 - SI. 

analysis of the visible spots 
identified the following pro- 
teins (NCBI database): spots l4 kD ' 
1 to 7, PHGPx (accession 
number 544434); spots 8 
and 9, outer dense fiber pro- 
tein (accession number B 
P21769); spots 10 and 11, perk m h  mslduen 

voltage-dependent anion a.i. I 1 4  6 
1 868 : 63 - 69 

channel-like protein (acces- qooo+ i ~ 2 921 : 13 - 20 

sion number 540011); spot i ! ,  ~ 3 978:  6 -  12 
I 4 1026: 91 - 99 

12, "stress-activated protein : ! 5 1293 : 141 - 151 

kinase" (accession number 8000i ! 6 1322: 7 0 -  80  
! 7 1419 : 163 -164  

493207); spot 13, glycerol-3- B 1435: 1 5 3 - 1 6 4  
S 1525: 106 .118  

phosphate dehydrogenase 10 1576:  1 5 2 - 1 6 4  

(accession number P35571) 12 1622:  21 - 33 

(22). (B) MALDI-TOF spec- 13 1644: 4 9 .  62 

trum (overview) of tryptic 14 1797 : 91 - 1 0 5  
16 15 2120: 81 - 99 

peptides obtained from 16 2137: 81 - 99 17 2434: 70 - 90 
PHCPx as found in spot 3. 
Abscissa, masslcharge ratio 
(mlz) of the peptide frag- 
ments; ordinate, arbitrary 1200 1700 2200 2700 mlz 

units of intensity (a.i.). The insert lists the mass signals 1 to 17 attributed to tryptic fragments of PHCPx 
with measured mlz values and corresponding residues in the PHCPx sequence. Peaks 8 and 11 
correspond to tryptic fragments with oxidized methionine residue; peak 15 corresponds to  a fragment 
with an NH,-terminal pyroglutamyl residue. T, trypsin-derived fragments. 

proved to be PHGPx, according to the masses 
of tryptic peptides detected by MALDI-TOF 
spectrometry (Fig. 2B). All tryptic fragments 
yielding MALDI-TOF signals of high intensity 
could be attributed to PHGPx or trypsin. The 
predicted NH,-terminal (positions 3 to 12) and 
COOH-terminal peptides (positions 165 to 
170), the fragment corresponding to positions 
100 to 105, and those expected from the basic 
sequence part (residues 1 19 to 15 1) were too 
small to be reliably identified. The fragment 
corresponding to positions 34 to 48 comprising 
the active site selenocysteine was not detected 
either. The more acidic spot 4 of Fig. 2A, the 
more basic spots 1, 2, and 5, and those exhib- 
iting a smaller apparent molecular mass (spots 6 
and 7) also contained PHGPx (15). Spots 1 to 6 
were essentially homogeneous. Spot 7 showed 
a trace of impurity that could not be identified 
by masses of fragments. Integrated stain inten- 
sities of the individual spots indicate that 
PHGPx constituted about 50% of the capsule 
material. 

Minor components present in the gel (Fig. 
2A, spots 10 to 13) were assigned to mito- 
chondrial proteins or to cytosolic contamina- 
tions. Spots 8 and 9 consisted of "outer 
dense fiber protein," a cysteine-rich struc- 
tural sperm protein that is associated with 
the helix of mitochondria in the midpiece 
but also extends into the flagellum. SMCP 
was not detected. This basic protein that 
becomes superficially associated with the 
outer mitochondrial membranes in late 
spermatids and epididymal spermatozoa (5) 
might have been degraded by trypsination 
during capsule preparation. 

PHGPx was enzymatically inactive in ma- 
ture spermatozoa prepared from the tail of the 
epididyrnis and was not reactivated by the 
reduced form of glutathione (GSH) in the low 

C - - - - 2 2  

1 2  3 4  1 2  3 4  

Fig. 3. Formation of PHCPx-containing aggre- 
gates by H,O, in the absence of CSH. (A) 
Whole rat spermatozoa were solubilized with 
0.1 M 2-mercaptoethanol and 6 M guanidine- 
HCI and freed from Low molecular weight com- 
pounds as described (77). Aliquots of the pro- 
tein mixture (0.05 mg of protein) were subject- 
ed to  SDS-PACE under reducing (Lanes 1 and 2) 
and nonreducing conditions (lanes 3 and 4) at 
zero time (lanes 1 and 3) or after 15-min 
exposure to  75 (IM H202 (Lanes 2 and 4). 
PHCPx-containing bands were detected by pro- 
tein immunoblotting (70). (B) Lanes 1 to  4 
show the same experiments but performed 
with purified rat testis PHCPx adjusted to  the 
PHCPx content in solubilized spermatozoa1 pro- 
teins. Only traces of dimerized PHCPx and ag- 
gregates are seen in the sample exposed t o  
H,02 for 15 min (Lane 4). 
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~nill~molar range, as used under corn~entional 
test conditions (14). High concentrations of 
thiols (0.1 bf 2-mercaptoetl~anol or DTT), 
nrhicll in the presence of guanidine fully dis- 
sol\-ed the capsule, regenerated a substantial 
PHGPx acti\-ity (17).  In fact. the specific 
activities thereby obtained from mitochondri- 
a1 capsules (5600 i 290 mU'mg protein) 
exceeded. by a factor of 20; the values mea- 
sured in spennatogenic cells (250 = 10 inU1 
mg). Ne\-ei-theless, the PHGPx acti1-ity regen- 
erated from the capsule material was loxi, 
relative to its PHGPx protein content. On the 
basis of the specific activity of pure PHGPx. 
the reactivated enzyme would be equ~valent 
to less than 3% of the capsule protein, where- 
as the 2D electrophoresis suggested a PHGPx 
proteln content of at least 50%. The increase 
of PHGPx act~vity by the reductive procedure 
was similarly observed in epid~dyinal sper- 
matozoa (from zero to 3140 i 200 mU'mg 
protein) but not in spe~matogenic cells from 
testicular tubules (250 t 10 to 260 = 10 
n~L'mg). The latter obse~vatioll is consistent 
with the expression of PHGPx as acti1-e per- 
ox~dase in round spelmat~ds (3). The sxi~itch 
of PHGPx from a soluble active enzyme to an 
enzymatically inactive structural protein thus 
occurs during differentiat~on of spellnatids 
into spelmatozoa (18). 

The alternate roles of PHGPx as a glutathl- 
one-dependent hydroperoxide reductase or a 
structural protein are not ilecessallly uil~elated. 
A feahlre colllrnoil to all glutathione peroxi- 
dases is a selenocysteine res~due, which. togeth- 
er with a tryptophan and a glutarnine residue, 
forms a catalytic hiad (19). Therein the selenol 
group of the selenocysteine residue is oxidized 
by hydroperoxides with high rate constants. 
The reaction product, a selellenic acid deri1-a- 
tive. R-SeOH. reacts with GSH to fonn a 
selenadisulfide bridge between enzyme and 
substrate, R-Se-S-G, fsom nrhich the ground- 
state e m m e  is regenerated by a second GSH 
In analogy, PHGPx, n~lnc11 is the least spec~fic 
of the glutathioile peroxidases (19), can use 
protein thiols as alternate substrates to create 
protein aggregates that are cross-linked by 
selenadisulfide or disulfide bonds. This likely 

to shield germ line cells from oxidative dam- 
age by hydroperoxides (3, 20). T h ~ s  concept 
still merits attention with regard to the muta- 
genic potential of hydroperoxides and prob- 
ably holds true for the early phases of sper- 
matogenesis. At this stage. pheno~nena attrib- 
uted to the enzymatic activity of PHGPx or 
other glutath~one peroxidases--for ~nstance, 
silencing lipoxygenases. dampening the actl- 
vation of nuclear factor KB, or inh~bi t~ng 
apoptosis (21)-may also be relevant Mature 
spennatozoa, hoxire\-er, depend on PHGPx as 
a structural protein. because the morpholog- 
ical midp~ece alterations that are obsen~ed in 
selenium deficiency l~kely result from im- 
palred biosynthes~s of the selenoproteii~. In 
consequence, it is not the antioxidant capac- 
ity of PHGPx but the ability to use hydroper- 
ox~des for the foimation of a structural ele- 
ment of the spelmatozoon that is pi\-otal for 
rnale fertility. 
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Brigelius-Flohe et al., j .  Biol. Chem. 269, 7342 
(1994)] after cleavage of the first two  residues or 
derived from pre-PHGPx [T. R. Pushpa-Rekha, L. M. 
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a,llell exposed to H,O~ in the absence of GSH. were prepared as described [". Meistrich, j. 164 were also observed wi th the faster migrating 
tin, W. A. Brock, 8. R. Grimes, M. L Mace, Biol Reprod. specimen. Charge heterogeneity may arise from phos- 

yielded a valiety of PHGPx-containing aggre- 25, 1065 (1981)l. Sperm mitochondria1 capsule was phorylation [R. Schuckelt et al., Free Radical Res. 

gates (Fig. 3 4 .  This process depends on the prepared according t o  (4 ) .  Commun 14, 343 (1991)], deaminations ot Gin and 

presence of tlliol in proteins distillct 10. Proteins were blotted onto nitrocellulose, probed Asn residues, COOH-terminal degradation, and oxi- 
wi th an antigen-purified rabbit antibody raised dation or elimination of selenium. 

fro~n PHGPx, because ullder identical condi- against pig heart PHGPx, and detected by biotinyl- 16. A. Roveri, M. Maiorino, F. Ursini, Methods Enzymol. 
ti0ns only a marginal aggregate formation was ated ant~body t o  rabbit immunoglobulin G (IgG) and 233, 202 (1994). 
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12. Mitochondria1 capsule material (100 pg) was dis- pounds were removed by a NAP 5 cartridge equili- 

tein PHGPx in the illale reproductive system solved in 400 of a solution urea, brated wi th 0.01 M tris-HCI. 0.15 M NaCI. 1 m M  
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Eutrophication, Fisheries, and 
Consumer-Resource Dynamics 
in Marine Pelagic Ecosystems 
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Anthropogenic nutrient enrichment and fishing influence marine ecosystems 
worldwide by altering resource availability and food-web structure. Meta- 
analyses of 47 marine mesocosm experiments manipulating nutrients and 
consumers, and of time series data of nutrients, plankton, and fishes from 20 
natural marine systems, revealed that nutrients generally enhance phytoplank- 
ton biomass and carnivores depress herbivore biomass. However, resource and 
consumer effects attenuate through marine pelagic food webs, resulting in a 
weak coupling between phytoplankton and herbivores. Despite substantial 
physical and biological variability in marine pelagic ecosystems, alterations of 
resource availability and consumers result in general patterns of community 
change. 

Increased nutrient loadings and fisheries ex- 
ploitation are major humail pelfurbations to 
marine ecosystems worlda,ide (I). Alteration 
of resource availability represents a "bottom- 
up" perturbation of marine ecosystems, where- 
as removal of consumer biomass through 
fishing represents a "top-down" disturbance. 
An understanding of how bottom-up and top- 
doa,n processes influence the dynamics of 
marine communities is necessary for effec- 
tive management of marine ecosystems in the 
face of environmental variability and multi- 
ple human impacts. However, it is difficult to 
deteimiile the effects of resource availability 
and food-web interactions in open (pelagic), 
highly variable marine systems; most propo- 
sitions are based on anecdotal evidence from 
catastrophic events such as El Niiio years (2). 
fishery collapses (3) ,  and the introduction of 
exotic species (4). To detelnline how marine 
pelagic ecosystems respond to variation in 
the quantity of resources and consumers, I 
conducted meta-analyses of data fi-om a va- 
riety of experimental and natural systems and 
examined whether changes in the abundance 
of consumers (pelagic zooplanktivorous fish) 
cascade doan  inarine food webs to affect 

lower trophic levels, and whether changes in 
nutrient availability and primaiy productivity 
cascade up marine food webs to affect higher 
trophic levels. 

To address these questions, I assembled 
data from experimental manipulations con- 
ducted in marine mesocosms and from long- 
term inonitoriilg of open rnarine ecosystems. 
Experiments conducted in mesocosms elimi- 
nate open-system dynamics but represent 
controlled alterations of nutrient availability 
and food-web structure. In contrast; long- 
term monitoring of open marine systems doc- 
uments patterns at realistic spatial and tein- 
poral scales. The first data set comprised 
phytoplankton and mesozooplankton (mostly 
herbivorous copepod ciustaceans larger than 
150 to 300 km) data fi-om inarine mesocosin 
experiments where nutrient availability was 
manipulated by adding N compounds, or 
where food-web structure was manipulated 
by adding or removing zooplanktivorous fish 
or invertebrates ( 5 ) .  The second data set con- 
sisted of time series (7 to 45 years) of N 
availability (measured as the annual loading 
or as the average N concentration during winter 
months). primary productivity, and the bio- 
mass of phytoplankton, mesozooplankton, 

subunit Yb-2 (accession number 121719) and endo- 
thelin converting enzyme (NCBI accession number 
1706564) could be identified by MALDI-TOF or pep- 
tide sequencing. 
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tions by using the nah~ral logarithm of the 
ratio between the mean value of the variable 
in mesocosins with carnivores (zooplanktivo- 
rous fish or invertebrates) or nutrients (inor- 
ganic N compounds) added and in unmanip- 
ulated, control mesocosins (7). Zooplankti- 
vores caused significant decreases in meso- 
zooplankton biomass, both in mesocosms 
with no N added (Fig. 1A) and in nlesocosms 
enriched with N (Fig. 1B). Zooplailktivores 
caused an increase in phytoplanktoil biomass, 
but this trend was statistically significant only 
in systems that were also enriched with N 
(Fig. 1. A and B). Nitrogen addition caused 
similar and sigilificant increases in phyto- 
plankton biomass in inesocosms containing 
two (phytoplankton and zooplankton; Fig. 1 C) 
or three trophic levels (phytoplankton. zoo- 
plankton. and zooplanktivores; Fig. ID). Un- 
der either food-web configuration, nutrient 
addition did not affect mesozooplankton bio- 
inass (Fig. 1 ,  C and D). The effects of the 
inanipulations were not significantly correlat- 
ed with either experiment duration or meso- 
cosm size in zooplanktivore-manipulation ex- 
periments (8) ,  and the effects were only weak- 
ly correlated with duration but not with size in 
~lutrie~lt-mailipulation experiments (9). There- 
fore, these results are ~u~likely to be biased by 
the short duration or sinall inesocosm sizes 
used in most experiments. 

For the 20 open inarine ecosystems, I 
examined the cross-correlation beta,een time 
series of nutrients, productivity. and biomass 
of different trophic levels using Spearman 
rank coi~elation (10). Theoretical models ex- 
ploring the relations among resource avail- 
ability. food-web str-uchlre. and biomass of 
different trophic levels predict patterns of 
biomass accrual along productivity gradients 
at equilibrium, that is. after transient effects 
have disappeared (11, 12). Because seasonal 
events such as upwelling and sudden increas- 
es in fish density fi-om immigration or spring 
reproduction are transient effects. I used year- 
ly values of productivity and bioinass to 
approximate equilibrium conditions. Year-to- 
year fluctuations in mesozooplanl<ton bio- 
mass were negatilely correlated with zoo- 
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and pelagic zooplanktivorous fish for 20 open planktivorous fish ( I .  = -0.22; 95% confi- 
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