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Conservatism of Ecological 
Niches in Evolutionary Time 

Theory predicts low niche differentiation between species over evolutionary 
t ime scales, but l i t t le empirical evidence is available. Reciprocal geographic 
predictions based on ecological niche models of sister taxon pairs of birds, 
mammals, and butterflies in southern Mexico indicate niche conservatism over 
several million years of independent evolution (between putative sister taxon 
pairs) but l itt le conservatism at the level of families. Niche conservatism over 
such t ime scales indicates that speciation takes place in geographic, not eco- 
logical, dimensions and that ecological differences evolve later. 

Critical characteristics of species' biology, 
such as physiology, feeding ecology, and re- 
productive behavior, define their fundamen- 
tal ecological niches (1). In the early 1990s, 
several theoretical coinmunity ecologists in- 
dependently predicted that fundamental nich- 
es of species under natural selection could 
change. but slowly. Based on diverse models 
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that coupled population and genetic dynamics 
in heterogeneous environments, niche con- 
servatism was predicted, because rates of ad- 
aptation in environments outside of the fun- 
damental niche would often be slower than 
the extinction process (2). 

However, little empirical evidence has 
been assembled to address these theoretical 
predictions (3). One study (4) that compared 
population response surfaces to climatic con- 
ditions in two closely related species of 
beeches (Fc~gzgus spp.) showed that limiting 
conditions for the presence of populations 
were coincident. Another shtdy (5) docu- 
mented conservatism in geographic range 
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plant taxa but focused principally on distri- 
butional area as opposed to ecological niche 
characteristics. Other recent studies, howev- 
er, have revealed rapid (over about 100 years) 
niche evolution that may be linked to specia- 
tion (6). These two contrasting views remain 
to be tested in broad samples of taxa to assess 
the generality of niche conservatism on evo- 
lutionary time scales. 

We now apply new tools and approaches 
to examine this question in birds, mammals, 
and butterflies in an arena of active specia- 
tion and population differentiation-the 
Isthmus of Tehuantepec in southern Mexi- 
co (7). Drawing on extensive databases that 
summarize scientific specimen holdings, 
we examined 2 1 sister taxon pairs of birds, 
11 sister taxon pairs of mammals, and 5 
sister taxon pairs of butterflies and tested 
the degree to which ecological characteris- 

Fig. 1. Geographic distributions 
of A. heloisa (circles) and A. elli- 
oti (squares) (A), P. melanocar- 
pus (circles) and P. zarhynchus 
(squares) (B), and P. c. charops 
(circles) and P. c. nigricans (squares) 
(C). Occurrence points for each 
taxon are overlaid on geographic 
predictions based on the ecologi- 
cal characteristics of occurrence 
points of its sister taxon (dark gray 
for east of Isthmus of Tehuante- 
pec predicting west, light gray for 
convene). Dashed lines show ap- 
proximate position of the Isthmus. 
of Tehuantepec. 

tics of one taxon were able to predict (with 
an artificial intelligence algorithm) the geo- 
graphic distribution of its putative sister 
taxon and vice versa. To provide compari- 
sons over longer time scales, we also ana- 
lyzed randomly chosen confamilial, nonsis- 
ter taxa (8-11). 

Based on large-scale ecological dimen- 
sions, the approach uses a genetic algo- 
rithm to produce a set of decision rules in 
ecological space (a model of the fundamen- 
tal niche) that can be projected onto maps 
to predict potential geographic distribu- 
tions. Modeling each member of the puta- 
tive sister taxon pairs in this study yielded 
not just a predicted geographic range ap- 
proximating its own geographic distribu- 
tion but also a predicted range mirroring 
the geographic distribution of its allopatric 
sister taxon. For example, for the hum- 

mingbird species pair Atthis heloisa (north 
and west of the isthmus) and Atthis ellioti 
(south and east of the isthmus), the model 
for A. heloisa successfully predicted all six 
occurrence points available for A. ellioti, 
and the model for A. ellioti predicted 66 of 
79 occurrence points for A. heloisa (Fig. 
1A). Statistical significance of the Atthis 
comparisons was clear, with probabilities at 
about 0.03 for the first comparison and at 
about for the second. Across the 37 
pairs, 32 eastern taxa predicted distribu- 
tions of western taxa significantly, and 26 
western taxa predicted distributions of east- 
ern taxa significantly (Fig. 1). When we 
examined significant and nonsignificant 
predictive models, we noted a strong rela- 
tionship with sample size: models were 
nonsignificant only at sample sizes of < 15 
points for the predicted taxon (Fig. 2). For 
all taxon vairs, at least one of the recivrocal 

m .  

predictions was statistically significant. 
When we compared the ability of each 
taxon to predict its sister taxon's distribu- 
tion with its ability to predict the distribu- 
tions of all other taxa on the opposite side 
of the Isthmus of Tehuantepec, the differ- 
ence was marked and statistically signifi- 
cant (12). In contrast, only a few predic- 
tions of distributions of confamilial taxa 
were statistically significant regardless of 
sample size (Fig. 2). 

The above analyses show conservative 
evolution in ecological niches of 37 sister 
taxon pairs of birds, mammals, and butterflies 
isolated on either side of the lowland barrier 
Isthmus of Tehuantepec. The forested habi- 
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Sample size 

Fig. 2. Graph of average departure in reciprocal 
predictions among putative sister taxon pairs 
(open symbols) and confamilial species pairs 
(filled symbols), illustrating the significant in- 
terpredictiveness among sister taxa and the 
nonsignificant interpredictiveness among dis- 
tantly related, confamilial taxa. Vertical axis 
represents the average of x2 values for inter- 
predicting taxon pairs, taking into account di- 
rection of departure from expectation (that is, 
predictions worse than expectation are as- 
signed negative values). Solid and dashed lines 
represent linear regressions of departure values 
on sample size for sister-taxon and confamilial 
comparisons, respectively. 
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tats on either side of the isthmus have been ico: Origins and Distribution (Oxford Univ. Press, New 10. Locality data were georeferenced t o  the nearest 

isolated for 2.4 to 10 X lo6  years (13); 
hence. the observed conservatism has held 
for effectively twice that time of indepen- 
dent evolution in the pairs of lineages in- 
volved. Although ages of "families" are 
disputed (14),  this expanded time scale 
(perhaps 10 to 50 X 10" years) has been 
sufficient to permit evolutionary diversifi- 
cation in niche characteristics. Hence, our 
results broadly confirm theoretical predic- 
tions of relative conservatism in ecological 
characteristics of species. 

Conservatism of ecological niches across 
moderate periods of evolutionary time also re- 
flects the modes of speciation involved. Strict 
vicariant speciation depends simply on geo- 
graphic isolation, whereas other scenarios, 
such as the peripheral isolates model of spe- 
ciation and many models of sympatric spe- 
ciation (15). invoke invasion of novel eco- 
logical situations as part of the speciation 
process. The taxa and ecological dimensions 
treated here support the vicariant hypothesis, 
with ecological differences building up later, 
well after the speciation event. An untested 
question is whether the observed conserva- 
tism results from active constraint (stabilizing 
selection) or whether it reflects the absence 
of additive genetic variation in niche-related 
traits (16). Similarly, our analysis does not 
eliminate the possibility of niches of both 
members of species pairs responding in par- 
allel to broad-scale environmental changes. 

To the extent that our geographic scenario 
is representative. our results suggest that eco- 
logical niches evolve little at or around the 
time of the speciation event. Rather, ecolog- 
ical niche differences appear to accumulate 
later, over the time scale of familial relation- 
ships. Finding general conservatism in eco- 
logical niches opens the door to phylopenetic - - .  - 
studies of niche evolution, comparative eval- 
uations of conditions under which niche con- 
servatism breaks down, construction of pre- 
dictive distributional models, and numerous 
other applications to questions in biogeogra- 
phy (estimates of a and P diversity, centers of 
endemism). biodiversity (foci of soecies di- , , 

versity). and conservation biology (develop- 
ment of conservation prioritizations). 
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