
the D-loop that must be the tRNAHe sequence 
(7). Because this D-loop sequence does not 
interact with the protein in this crystalline 
complex, the explanation for the dependence 
of editing on this sequence is not immediately 
apparent. Either the protein undergoes a ma- 
jor co~iformational change, perhaps bringing 
the editing doinail1 in contact with the D-loop 
sequence, or the influence of this sequence is 
expressed through the tmA structure. In ei- 
ther case, the misacylated substrates would 
have to travel between the two active sites. 

A similar dynamic competition between 
the synthetic and editing sites is also used in 
DNA polymerase editing (17) .  In Klenow 
fragment of ~>clzericlzia coli DNA polymer- 
ase I, double-stranded DNA binds to the poly- 
merase active site and a melted out single- 
stranded primer terminus binds to the editing 
active site (1 7). The shuttling of the DNA 
substrate between the two active sites of Kle- 
now fragment can occur by dissociation from 
one site and reassociatioll with the other or by 
processive sliding (18). We propose that the 
editing of both misincorporated nucleotides 
by DNA polymerase and misaminoacylatioll 
of tRNA or ATP by IleRS may proceed by 
analogous shuttle mechanisms (Fig. 4). 
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Quaternary Structure of the 
Insulin-Insulin Receptor 

Complex 
Robert Z.-T. buo,' Daniel R. Beniac,* Allan ~ernandes,' 

Cecil C. Yip,'* F. P. Ottensmeyer2* 

The three-dimensional (3D) structure of the intrinsically dimeric insulin re- 
ceptor bound to its ligand, insulin, was determined by electron cryomicroscopy. 
Gold-labeled insulin served to locate the insulin-binding domain. The 3D struc- 
ture was then fitted with available known high-resolution domain substructures 
to obtain a detailed contiguous model for this heterotetrameric transmembrane 
receptor. The 3D reconstruction indicates that the two a subunits jointly 
participate in insulin binding and that the kinase domains in the two 0 subunits 
are in a juxtaposition that permits autophosphorylation of tyrosine residues in 
the first step of insulin receptor activation. 

The cellular receptor for the hormone insulin is lular domain of the intrinsically dimeric IR re- 
a transmembra~ie receptor tyrosine kinase (TK) sults in a~ltophosphorylation of specific ty- 
that is a disulfide-linked dimer. The 480-1D rosines in the IR c>qoplasmic domain and the 
insulin receptor (IR) is composed of mTo het- initiation of an intracellular signal transduction 
erodimers, each of which contains an a and cascade (3). However, the structural basis for IR 
chain (1, 2). Binding of insulin to the extracel- activation by insulin has not been elucidated 
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because the quaternary structure ofthis receptor- About 700 images were selected for recon- for the complex, of being structurally contig- 
ligand complex is not known. Only a few iso- struction on the basis of having a definite site uous, and of being separated from neighbor- 
lated IR domains have yielded high-resolution of high density, of having the expected mass ing images (12). The 3D reconstruction of the 
structural information: the intracellular TK do- 
main (4) and the first three NH,-terminal do- Fig. 2. STEM dark-field 

images of human IR 
bound to  Nanogold-la- 
beled insulin (IR-NCBI). 
(A) Field of view show- 
ing several complexes. 
Arrowheads indicate 
Nanogold markers. 
Scale bar = 20 nm. (B) 
IR-NCBI images ex- 
tracted from image 
fields, low-pass filtered 
to 1.0 nm (left col- 
umn), and represent- 
ed at a high-density 
threshold (right col- 
umn) showing one or 
two sites of binding. 

mains, the Ll-Cys-rickL2 (LCL) region of the 
homologous insulin-like growth factor-1 re- 
ceptor (5) by crystallography, and the fibronec- 
tin structures of many homologous protein do- 
mains by nuclear magnetic resonance spectros- 
copy (6). We report the quaternary structure of 
the entire IR bound to insulin determined by an 
alternative approach: low-dose, low-tempera- 
ture, dark-field scanning transmission electron 
microscopy (STEM) and 3D reconstruction. IR 
was bound to insulin that was labeled with a 
70-atom gold marker that identified and delim- 
ited the insulin-binding site on the recmtruc- 
tion. Its location was key in determining the 
spatial relations of other IR domains in the 
structure. 

The 1.4-nm gold-atom marker, Nanogold 
(NG), was coupled to the B chain Phe' of 
bovine insulin (BI) (7), a location not directly I 
involved in receptor binding (8). This ligand, 
NGBI. bound to vurified. Mlv active human IR 
(9) with a slighiy reduced -&xiity compared 
with nonderivatized insulin (Fig. 1). NGBI was 
incubated, in the absence of adenosine triphos- 
phate (ATP), with IR to form the IR-NGBI 
complex (10). This complex was imaged by 
STEM at - 1 50°C and a dose of 6 e/A2 (1 I). In 
fields of individual molecules (Fig. 2A) IR- 
NGBI complexes measured 15 nrn across on 
average. Each bound NGBI particle produced a 
clear site of highest density, indicating binding 
of one ligand. Two NGBI particles were detect- 
ed only occasionally within one IR image, in 
close proximity to each other. 

y z ,  Side - view(65') 

-1  

I 
'Banting and Best Department of Medical Research, 
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Battom view Side view 125 '1 

Fig. 3. Three-dimensional reconstruction of the IR-NCBI complex (surface representation). (A) Density 
threshold representing the total expected volume for the complex (Al); intermediate-density threshold, 
unsymmetrized (A2); and high-density threshold of A2 showing only the NC label (A3). Circles indicate 
the location of the gold marker within the reconstructions. Resolution was 20 k, by Fourier phase 
residual analysis of two reconstructions with 352 images each (73). (B) Reconstruction with twofold 
symmetry shown at -70% of full volume, indicating the relations and connectivity of the structural 
domains. Labels, for only one ctp monomer, refer to  biochemical domains. The arrowhead indicates the 
proposed plane of the cell membrane. L1, C-R, L2 = Ll-cysteine-rich42 domains; CD = connecting 
domain; Fnl, Fn2 = fibronectin Ill repeats 1 and 2; TK = tyrosine kinase; TM = transmembrane domain. 

Fig. 1. Receptor-binding assay of Nanogold- 
labeled insulin (NGBI). Binding of NCBI to  pu- 
rified human IR was compared with the binding 
of bovine insulin (9): B K  = bound ligandltotal 
ligand. Inset shows mass spectrum obtained 
from MALDI-TOF analysis of purified NCBI (7). 
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IR-NGBI complex at the full expected vol- its vicinity within the IR complex. Because 
ume was compact and globular (Fig. 3A1). insulin binds to the LCL regions of the IR 
The NG particle position (Fig. 3A) limited (13), the NGBI location identifies this extra- 
the localization of the insulin-binding site to cellular region in the reconstruction. 

Fig. 4. Fitting of biochemical domains and their known x-ray structures t o  the 3D reconstruction. 
(A) Schematic figure of the domain structure for one a p  monomer based on the following: the 
connectivity of 3D reconstruction, the primary domain sequence, the symmetry requirement for 
two disulfides on a twofold axis (79) the fit of known domain structures, and the principle of 
keeping unknown domains compact. Distances between modeled locations of CD, Fnl, and 
symmetrical disulfides are commensurate with the numbers of intervening amino acids (structures 
not to  scale: a subunit, red; p subunit, blue and green; unknown structures, spheres or lines): Labels: 
A = TK activation loop; 1 = Cys5"; 2 = CysM2, CysM3, C ~ S ~ ~ ~ ;  3 = disulfide bond between Cys647 
and C~S"'~; arrowhead = cleavage site of precursor receptor protein (20); other labels as described 
in Fig. 38. (8) Fitting of LCL domains as approximate cylinders t o  edodomain of IR (wire mesh 
representation). One insulin molecule (purple ribbon) is shown inserted with its receptor-binding 
domains contacting the L1-Cys-rich domains of one a subunit (fuchsia) and the L2 domain of the 
other (red). The NG marker (yellow) on the insulin B chain coincides with a high-density site. (C) 
Stereo images of a right angle view of (B) with LCL domains (insulin partly hidden), fitted TK 
structure (green), two dimeric Fnlll structures (blue and red), A-loop (black) of the left TK domain 
in crystallographic position, and A-loop (dark blue) of symmetric TK extended to  overlap peptide 
substrate of opposite TK (4). (D) Stereo images of a right angle top view of (B) showing Fnlll 
domains (blue and red), TK domains ( reen), and crystallographic black) and extended (dark blue) 
A-loops. One wire mesh square is 6.5 b Accession numbers insulinbrotein Data Bank (PDB): lBEN] 
(27), TK structure (PDB: 1IRK) (4) and Fnlll (PDB: 1MFN) (6). 

Domainlike features became evident at 
intermediate-density thresholds (Fig. 3A2), 
and, except for the NGBI region, these indi- 
cated a strong twofold vertical rotational 
symmetry. This symmetry was applied to the 
reconstruction to reduce noise. The resulting 
structures are shown as viewed in the plane of 
the membrane, and from the extracellular 
(top) and intracellular (bottom) perspectives 
(Fig. 3, A1 and B). 

In the side views, we identified the top 
part of the structure as the ectodomain by the 
location of NGBI. The side view at 65O 
shows the LCL domains as contiguous sub- 
structures of the central region of the ectodo- 
main, with enough additional volume beyond 
L2 to account for the mass of the connecting 
domains (CD) of the two a subunits. 

The connectivity of the domain structure 
(Fig. 3B, top view and 90" side view) and the 
primary domain sequence (Fig. 4A) placed 
the two $ subunits in the lower half of the 
structure, distal from L1. The intracellular 
TK domains would then fill the bottom por- 
tions of this structure. Higher up, two fi- 
bronectin type I11 (FnIII) repeats in each re- 
ceptor half (14) appear pontoonlike to sup- 
port the centrally located insulin-binding seg- 
ment of the ectodomain. One FnIII repeat is 
contiguous with the CD portion of the a 
subunit (Fig. 3B, top view). It has been sug- 
gested that the CD also has an FnIII structure 
(15). The fitting of the known crystal struc- 
tures of the TK domain (green) and of the two 
FnIII repeats (blue and red) are shown as 
stereo images in Fig. 4, C and D. 

A slender horizontal bridge connected the 
putative kinase domains (Fig. 3B, 90'). This 
can be explained in terms of the reconstruction 
representing a transition state between unbound 
IR and its ligand- and ATP-bound, fully acti- 
vated form. In the two symmetrically fitted TK 
crystal structures, the catalytic loops are sepa- 
rated by 4 nm (Fig, 4, C and D). This distance 
is just sufficient to permit the tyrosine triplet 
(tyrosine-1 158, -1 162, and -1 163) in a fully 
extended, flexible activation loop of one TK to 
reach the catalyhc loop of the opposite TK, as 
modeled from the x-ray coordinates (4). Such 
extended activation loops easily account for the 
linking density observed between the lower 
portions of the $ subunits (Fig. 3B, 90' side 
view). On the basis of the mass contiguity, the 
cell membrane is logically located below the 
a subunits and above the TK domains. This 
space in the reconstruction forms a thick 
dome-like slab with a thickness of 2.2 to 2.7 
nm. The space differs from that expected for 
a flat membrane bilayer that would accom- 
modate an a-helical transmembrane (TM) 
domain of 23 to 26 hydrophobic amino acids. 
Because the purified IR extracted from its 
native membrane was fully active (9), the 
relative positions of the domains likely rep- 
resent a close to native arrangement. 
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The crossing LCL domains of the IR 
di~ner are represented here only in their gen- 
eral shape (Fig. 4. B and C): the known x-ray 
coordinates are not yet available (5). None- 
theless, the slightly asymmetric NGBI loca- 
tion indicated that one insulin molecule con- 
tacts the L1-Cys-rich domains of one ci sub- 
unit and the L2 domain of the other a subunit. 
A theoretical model involving both ci sub- 
units in the high-affinity insulin binding has 
previously been proposed (16). Our 3D re- 
construction provides structural evidence for 
this mode of binding, for the bivalency of the 
IR. and for structural interaction of the two 
binding sites: This explains the cunilinear 
Scatchard p16t, the negative cooperativity of 
insulin binding (17). and the low-affinity 
binding of IR monomers (18). 

Monomeric inactive receptor TKs. such as 
the epidermal growth factor receptor and plate- 
let-derived growth factor receptor, are di~nerized 
and activated by ligand binding (19). In the 
intrinsically dimeric IR family receptors, the 
distance between the two cytoplasmic P-subunit 
TKs must be too gseat for activation without 
ligand binding. Hubbard et al. (4) suggested that 
insulin binding to IR decreased this distance by 
disengaging Tyrl 16' .*om the catalytic loop. In 
our reconstruction of IR bound to a single 
NGBI, a good fit to the ligand-receptor complex 
is obtained when the hvo TK domains are ori- 
ented with their catalytic loops juxtaposed. An 
extended flexible activation loop of TK, which 
moves 30 a betsveen the inactive and activated 
states ascertained c~ystallogsaphically (4), can 
just reach the catalytic loop of the opposing TK. 
Thus, one ~nolecule of insulin is sufficient to 
bring the IR to an activating configuration. 

The 3D quaternary structure of the IR-insu- 
lin co~nplex, formed in the absence of ATP, 
likely represents an intermediate state betsveen 
insulin-free IR and the fully activated, phospho- 
rylated IR. In the absence of a crystallographic 
structure of the entire insulin receptor, the 3D 
reconstruction provides structural infoilnation 
toward the full understanding of transmem- 
brane signal transmission in insulin action. This 
3D reconstruction approach may be applicable 
to determining the quaternary structure of other 
large protein complexes that are refkactory to 
crystallization 
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Coordinate Regulation of RAG7 
and RAG2 by Cell Type-Specific 

DNA Elements 5' of RAG2 
Wong Yu," Ziva Misulovin,' Heikyung Suh,' Richard R. 
Mila Jankovic,' Nikos Yannoutsos,' Michel C. ~ussenzweig'* 

RAGI and RAG2 are essential for V(D)J recombination and lymphocyte devel- 
opment. These genes are thought to  encode a transposase derived from a 
mobile genetic element that was inserted into the vertebrate genome 450 
million years ago. The regulation of RAG7 and RAG2 was investigated in vivo 
with bacterial artificial chromosome (BAC) transgenes containing a fluorescent 
indicator. Coordinate expression of RAGI and RAG2 in B and T cells was found 
to be regulated by distinct genetic elements found on the 5 '  side of the RAG2 
gene. This observation suggests a mechanism by which asymmetrically dis- 
posed cis DNA elements could influence the expression of the primordial 
transposon and thereby capture RAGS for vertebrate evolution. 

Vertebrates asse~nble immunoglobulins (Igs) protein products of the recombinase-activating 
and T cell receptors (TCRs) by a site-specific genes RAG1 and RAG2 (2). R4Gs initiate 
DNA recombination reaction known as V(D)J V(D)J recombination by recognizing recombi- 
recombination (I). V(D)J recon~bination occurs nation signal sequences that flailk Ig and TCR 
only in lymphocytes and is catalyzed by the variable, diversity; and joining gene segments 
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