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display the same underlying phase- and den- 
sity-dependent structure. For this purpose we 

Canada Lynx Populations Within use a pleceuise llnear model (14. 15) 
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Across the boreal forest of Canada, lynx populations undergo regular density 
cycles. Analysis of 21 time series from 1821 onward demonstrated structural 
similarity in these cycles within large regions of Canada. The observed popu- 
lation dynamics are consistent with a regional structure caused by climatic 
features, resulting in a grouping of lynx population dynamics into three types 
(corresponding to three climatic-based geographic regions): Pacific-maritime, 
Continental, and Atlantic-maritime. A possible link with the North Atlantic 
Oscillation is suggested. 

Periodic population fluctuations of the Can- 
ada lynx (Lynx canadensis) have greatly in- 
fluenced both ecological theory and statistical 
time series modeling [(I, 2); see (3) for a 
summary]. Recent analyses have focused on 
the extent of synchrony in population fluctu- 
ations, assessing the importance of external 
abiotic factors (such as weather) and internal 
biotic factors (such as dispersal among pop- 
ulations) in causing spatial patterns (4). Such 
empirical and theoretical approaches have, 
however, assurned that the populations were 
structurally similar [that is, the density-de- 
pendent relationships are identical among 
populations (j)]. This assumption has never 
been thoroughly evaluated. To do so requires 
determining whether the lynx populations 
display the same phase- and density-depen- 
dent structure (3) and then searching for sim- 
ilar underlying causes of the observed dy- 
namics. Using new statistical methods devel- 
oped for this purpose (6 ) :  we ask to what 
extent the time series on the Canada lynx 
(Fig. 1) compiled by the Hudson Bay Corn- 
pany for the period 1821 to 1939 (7) and the 
co~~esponding more modern time series com- 

piled by Statistics Canada for the period 1921 
to present (8);  taken together, are structurally 
similar. Specifically, we ask whether the 
phase- and density-dependent structure of 
changes in lynx abundance cluster into 
groups defined according to ecological-based 
features (9) or according to climatic-based 
features (1 0, 11). 

The available time series (Fig. 1A) cover 
two ecosystems (referred to below as ecolog- 
ical regions): the northern, open boreal forest 
(Fig. 1B) and the southern, closed boreal 
forest. In western Canada, the mountainous 
topography adds complexity. Additionally, 
the series cover three climatic regions defined 
by the spatial influences of the North Atlantic 
Oscillation (NAO) [Fig. 1C; see (12)]: which 
may contribute to spatial differences in tro- 
phic interactions (13). 

Previously, we fitted a piecewise linear 
autoregressive model (14) to each of the 
series (3). A general hare-lynx model (3, 15) 
may be expressed as an equivalent model in 
delay coordinates of the lynx (the species for 
which we have data). Here we check whether 
all the time series; or some subsets of these, 

where ys,, is the log-transfolmed abundance of 
lynx at site s and for year t [that is, yi,t = 
log(Ys,,) where Y?,, is the abundance of lynx at 
site s and in year t; and where s = 1, 2, . . . ; 
represent the sites corresponding to the individ- 
ual time series; see Fig. lA]; P,.,, are the sta- 
tistical parameters that determine the phase- 
and density-dependent structure of the system (i 
= 1 and 2 correspond to the lower and the 
upper regimes of the model; j = 0: 1, 2 corre- 
spond to the constant term: the first lag, and the 
second lag, respectively) at site s; E ~ , , ,  is nor- 
mally distributed, time-independent noise 
[;V(O,U~~,,)]; and 8, is the threshold applicable to 
the log-transformed density d years earlier. 
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Such a threshold approach has several statistical 
advantages (16). The upper (respective lower) 
regime has been found to correspond to the 
decrease (respective increase) phase (3). 

Because of varying carrying capacities 
and trapping efforts across sites, we expect 
series to have different means and standard 
deviations. Therefore, Chan et al. (6) consid- 
ered the hypothesis of common structure that 
all series enjoy the same dynamics up to their 
means and standard deviations. The hypoth- 
esis of common structure is equivalent to 
two hypotheses: the hypothesis of common 
slopes P,,;) = PI,;,,, and the hypothesis of 
common ratio of intercepts [(the intercept 
in the upper regime)/(the intercept in the 
lower regime)] takes the same value at the 
threshold across the different sites. Chan et 
al. (6) derived some test statistics for 
checking these hypotheses. 

We also compared model fits between var- 
ious possible groupings of the time series into 
subgroups. The SETAR (self-exciting threshold 
autoregression) models (Eq. 1) may be con- 
strained to have some coefficients identical 
across series within a given subgroup. Different 
groupings can be compared in terms of their 
respective AICs (Akaike information criteria) 
(14, 17). For groupings involving different se- 
ries to be comparable, each grouping will be 
defined for all series. A model with minimal 
AIC strikes a good balance between parsimony 
and goodness of fit to the data. 

Time series coming from the same loca- 
tions exhibit the same dynamic structure, in- 
dicating a common underlying dynamic mod- 
el (18). The time series come from forested 
biomes across Canada and thus from areas 
with greatly different plant species composi- 
tion and habitat structure. Focusing on the 
vegetation, we may classify the time series 
into two ecological-based groups (Fig. 1B): 
the northern forest tundra, which consists of 
shrub tundra and low-density trees (19), and 
the true boreal forest, which is a mixture of 
conifer and deciduous trees (19). [A western 
ecological-based group with heterogeneous 
topography and habitat, as well as climate 
(20) may also be identified.] However, treat- 
ing the old and modem series separately, the 
ecological-based grouping represents no im- 
provement over the baseline of no grouping 
[Table 1; see also (21, 22)]. 

As an alternative to this ecological-based 
grouping, the Canada lynx series may be 
grouped according to three rnajor climate-based 
features: the Pacific-maritime region, the Con- 
tinental region, and the Atlantic-maritime re- 
gion (Fig. 1C). This grouping clearly provides a 
better description of the data [Table 1; see also 
(22)l. The similarity is particularly strong for 
the decrease phase. There is evidence in support 
of climate-based properties contributing to the 
structuring of the lynx dynamics. 

Over much of central and western Cana- 

Fig. 1. Time series data studied. (A) Map of Canada with demarcations of the studied time series [red 
indicates the Hudson Bay Company time series (7) and black indicates the recent series (8)]. See (3) for 
definitions of names of the individual time series used. (B) Ecological regions of Canada (24). (C) 
Climatic regions of Canada (10). The NAO refers to a meridional oscillation in surface pressures with 
centers of action near Iceland and over the subtropical Atlantic When surface pressures are lower than 
normal near Iceland and higher than normal over the subtropical Atlantic (the positive phase of the 
NAO), enhanced northerly flow over eastem Canada cools surface temperatures and enhanced 
southerly flow from the Gulf of Mexico into much of central Canada produces warm surface anomalies. 
Over the Pacific-maritime region, there is no significant NAO signature. 

da, surface climate is most strongly influ- 
enced by the atmospheric circulation up- 
stream over the North Pacific and in particu- 
lar by a natural mode of large-scale atmo- 
spheric variability known as the Pacific- 
North American (PNA) teleconnection pattern 
(23). However, the influence of the PNA on 
Canadian surface temperature is spatially ho- 
mogeneous. In contrast, the influence of the 
NAO on surface winter temperatures varies 
considerably from coast to coast (Fig. 1C) 
and shows spatial variation corresponding 
well to the best grouping of the lynx series 
(Table 1). Hence, it is the winter atmospheric 
circulation, for which the NAO may serve as 
a proxy, that probably contributes to making 
the nonlinear structure of the hare-lynx dy- 
namics similar within each of the three Ca- 

nadian groups. Although it is generally 
known that climate profoundly influences re- 
gional variation in vegetation [for example, 
see (9)], our results suggest that the spatio- 
temporal patterns of climatic variation also 
influence the trophic interaction between the 
lynx and its main prey, the snowshoe hare, 
differently across these regions. 

Because the NAO may have a delayed 
effect on the lynx dynamics, we have to 
choose between using lag-0 or lag-1 NAO as 
the covariate. Several statistical techniques 
are available, including Cox's test of separate 
families of hypotheses, AIC or its many vari- 
ants, and others (1 7). Even though the effect 
of the NAO on lynx abundance is not strong, 
the lynx series fall along an east-west gradi- 
ent progressing from negative to positive and 
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Table 1. Common structure in the underlying dynamics. Groupings w i t h  the smallest AIC value represent 
the best ones. (Only the AIC differences between the particular grouping and the baseline comparison are 
given [see (22), where the absolute AIC values are also given]. In some of  t he  subgroups, the SETAR 
models are constrained t o  have some coefficients identical across series wi th in  the subgroup (see 
"Identical constraint structure" column). These constraints are suggested b y  the new statistical tests 
developed by Chan e t  al. (6). For different groupings involving different series t o  be comparable, each 
grouping is defined for all series in the panel; each series no t  in a grouping impl ic i t ly forms a singleton 
group. For definition o f  names o f  the series (L I ,  L2, . . . , L22), see (3). 

Groupings Group definitions 
AIC ldentical 

difference* constraint 
structure? 

Baseline comparison 
N o  groupings 

Old  and modern as 
separate'groupings 

Old  and modern 
grouped together 

Ecological-based grouping 

Climate-based grouping 
(mari t ime vs. continental) 

(Individual series wi thout  any constraints) 
(LI) ,  (LZ), . . . (L14), (L15), . . . (L22) 
Al l  Hudson Bay Co. series (LI,  L2, . .., L14) 
Al l  Statistics Canada series (L15, L16, . . ., L22) 
Al l  series together (LI,  L2, L3, . . ., L22) 

Western (LI,  L2) 

0-15) 
Northern (L3, L10) 

(L16, L17) 
Southern (L4, L5, L6, L7, L9) 

(L18, L19, L20) 
Eastern (L11, L12, L14) 

(L21, L22) 

Pacific-maritime (L I ,  L2) 

(L15) 
Continental (L3, L4, L5, L6, L7, L9, L10) 

(L16, L17, L18, L19, L20) 
Atlantic-maritime: (L1 1, L12, L14) 

(L21, L22) 

*AIC differences given in parentheses correspond to assuming only constraints on lag-I and lag-2 in the upper regime. 
t l ,  p,,,, and p,,22 each being common for different series (different s); 2, p,,i for each i and each j being common for 
different series (different s); 3, p, ,,,, ps,?,,, and p5,,, each being common for different series (different s). $The old 
and modern series in the Eastern (~tlant~c-maritime) seem to share the same lag. I and lag-2 coefficients in the decrease 
phase, as imposing these constraints further decreases the AIC by 3.39 for both groupings. 

finallv to no effect of the KAO. The nre\ii- exhibits quasi-periodicity, but was well aware of its 
1 

ously'observed phase-dependellt nature of the inadequacy. In he pointed out the inhomoge- 
neity of the fitted residuals, which violated the assump- 

density-dependent structure ( 3 )  remaills even tion of a common and constant variance for the white 
after the NAO is included as a co\iariate. As noise term in the fitted model. As an interesting histor- 

a result, this study is consistent with earlier ical point, i t  should be noted that Moran learned about 
the lynx data when he visited Charles Elton and Dennis 

lesults but adds the geographic Chittv In the Bureau of Animal Po~ulation at Oxford 
the structure of the lvnx time series. after'world War II 

We can now reach a comprehensive synthe- 3. N. C. Stenseth et al. Proc. Natl. Acad. Sci. U.S.A. 95, 
15430 (1998). of the time series of the Canadian 'ym- 4. E. Ranta, V. Kaitala, P. Lundberg, Science 278, 1621 

namely. the lynx cycle is a direct result of 119971: E. Ranta. V. Kaitala. I. Lindstrom. Ecoaraohv < . -  

trouhic interactions \~awing structurallv in three 20, 454 (1997). , " 
different regions of canada> a goup$g that is 5 .  The focus on one particular lynx series has to some 

extent distracted both ecologists and statisticians up 
associated with the large-scale climatic effects to the present from the fact that similar time series 
known to be associated with the KAO. We 
argue that the extensive similarity during the 
decrease phase is to a large extent a result of 
region-specific winter conditions and suggest 
that these may be linked to the state of NAO. 
We do not yet know; how; these winter climatic 
events influence the lynx cycle, but we suggest 
that lynx hunting efficiency needs to be mea- 
sured in the three climatic regions. 
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