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surface uildergoes a compositional change and 
expansion indicate that exposed (001) surfaces 
also participate in the dissolution process, at 
least initially. 

This study has provided directly measured 
dissolution rates for surfaces on phlogopite, a 
silicate mineral, at room temperature. It has also 
shonn that all phlogopite surfaces are reactive, 
including its basal surfaces. Each surface of 
phlogopite, or any other mineral, must behave 
according to the particular atomic structure, 
composition, and microtopogaphy of that sur- 
face. Furthermore, the dissolution of each sur- 
face has a temporal dependence, although this 
effect may only be substantially variable in the 
early stages of dissolution. Finally, external fac- 
tors must also come into play (for example, 
local conditioils and proximal flow regimes), 
especially in natural settings (21). The concept 
and use of reactive surface area in silicate dis- 
solution studies is now changing. It seems that, 
at least in the most favorable cases: the reactiv- 
ity of various surface components can be cata- 
loged and quantified. This opens the door to a 
new generation of rate equations and, ultimate- 
ly, to a much better understanding of how min- 
erals dissolve and influence our enviromnent. 
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Late Miocene Atmospheric CO, 
Concentrations and the 
Expansion of C, Grasses 

Mark Pagani,"? Katherine H. Freeman, Michael A. Arthur 

The global expansion of C, grasslands in the late Miocene has been attributed 
t o  a large-scale decrease in  atmospheric carbon dioxide (CO,) concentrations. 
This triggering mechanism is controversial, in part because of a lack of direct 
evidence for change in the partial pressure of CO, (pCO,) and because other 
factors are also important determinants in controlling plant-type distributions. 
Alkenone-based pCO, estimates for the late Miocene indicate that pCO, in- 
creased from 14 t o  9 million years ago and stabilized at preindustrial values by 
9 mill ion years ago. The estimates presented here provide no evidence for major 
changes in pCO, during the late Miocene. Thus, C, plant expansion was likely 
driven by additional factors, possibly a tectonically related episode of enhanced 
low-latitude aridity or changes in seasonal precipitation patterns on a global 
scale (or both). 

Instability in Miocene climates is detailed by patteins are thought to reflect changes in CO, 
extensive stable isotope records (I) and is concentrations (7-9) or tectonically driven 
associated with turnovers in marine (2, 3) and readjustments in ocean circulation (6, 10). In 
terrestrial biota (4), sea-level variability (j), particular, high-latitude climates gradually 
and changes in surface- (2) and deep-water warmed during the early to iniddle Miocene 
circulation ( 6 ) .  Short- and long-term climatic [-24 to 15 million years ago (Ma)] and then 
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rapidly cooled as the East Antarctic ice sheet vide a lecord of alkenone-basedpCO, estimates 
expanded duiing the middle Miocene (11) for the late Miocene (10 to 5 Ma) in combina- 

Evidence suggests that C, grasses expanded tion with apCO, recoid for the early to middle 
rapidly dunng the late Miocene (-8 to 4 Ma) Miocene (16), and evaluate the lole ofpCO, as 
(7) Charactenzed by the Hatch-Slack photo- a mechanism foicing this ecological change 
synthetic pathway, C, plants (laigely but not The alkenone approach to estimating pCO, 
exclusively represented by grasses) can inter- uses records of carbon isotopic fractionation 
nally concentrate CO, before carbon is fixed by dunng manne photosynthetic carbon fixation 
way of the Calvin cycle and subsequently avoid (ep). ep (expressed in per mil) for many marine 
the energetic costs of photorespiration (12, 13). algae is largely a filnction of the concentration 
This physiology provides C, plants \T ith a com- of aqueous CO, in the growth medium 
pe.tibve advantage over C, plants ( ~ h l c h  lack a ([CO,,,]), cellulai growth late (1 7) ,  and cell 
C0,-concentrating mechamsm) when the ratio geometry (18) The isotopic composition of 
of atmospheric CO, to 0, concentrations is low sedimentary organic carbon derived solely from 
(12, 14). ~urthe&ore, the ability to increase specific photosynthetic marine organisms is 
internal leaf CO, concentrations allows C, best evaluated by isolating molecular bioinark- 
plants to decreas; their stomata1 conductance, ers. When these biomarkers are unique to a 
which effectively increases their water-use ef- particular group of organisms, one avoids the 
ficiency (13). Such adaptations provide an ad- "noise" resulting from the integration of isoto- 
vantage under hot, high-irradiance, water- pic signals from an array of photosynthesizers 
stressed conditions (12). The distribution of with varying geometries, growth characteris- 
modem C, grasses on a global scale is most tics, and carbon fixation pathways. Long- 
strongly correlated to minimum growing season chained unsaturated ketones (alkenones) iepre- 
temperatures, with high minlmum temperatures sent one such class of bioinarkeis that are ex- 
favoring C, grasses (15). 

The above physiological considerations led 
Cerling et al. (7) to attribute a global expansion 
of C, plants in the late Miocene to a decrease in 
the partial pressure of CO, (pCO,) and to argue 
that crossing a critically low CO,/O, threshold 
triggered an ecological response. Here we pro- 
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clusively produced by some haptophyte algae 
in the modern ocean (19). en records construct- 
ed from diunsaturated alkenones (cP3, ,) have 
been used to detennine vanations in paleocean 
dynamics and Quaternary pCO, (20). Recent 
work, however. has vrovided an emuirical ex- 
pression of eP,, , as a function of smface-water 
[PO:-] and [CO,,,] (1 7) Accordingly, recon- 
struction of paleo-pCO,, which iequlres knowl- 
edge ofpast growth iates, can be constra~ned by 
est~mating surface-water [PO,'-] Our ap- 
proach was to obtain cp,,:, froin an oceano- 
graphic setting with long-term nutrient-limited 

Shallow-dwelling 
planktonic foraminifera 

diunsaturated alkenones 
81% (%o, PDB) S'3C (%o, PDB) 6180 (%o, PDB) Ep (%o) 

Fig. 1. (A) S13C values o f  heptatriaconta-15E, 22E-dien-2-ones (diunsaturated alkenones) f rom 
DSDP site 588 (53). PDB, pee dee belemnite. (B) SI3C values of shallow-dwelling planktonic 
foraminifera f rom site 588. (C) S180 values for shallow-dwelling planktonic foraminifera. (D) s, 
record derived f rom diunsaturated alkenones (53). E, = [(Sd + 1000/Sp + 1000) - I ]  X 103, 
where Sd is the  carbon isotopic composition of CO,,, calculated f rom planktonic foraminifera and 
6p is the  carbon isotopic composition o f  haptophyte organic mat ter  enriched b y  4.2 per m i l  relative 
t o  alkenone S13C values (54). Points represent the average o f  values measured for each sample. 0, 
data f rom Pagani e t  al.  (76); a, results f rom this study. 

conditions, such as those found in oligotrophic 
regions of mid-ocean gyres and inferred for our 
sample location. This approach minimizes the 
effect of growth rate on E~,,,:,, thereby leaving 
[CO,,cl] as the primary control (16). 

We studied samples from Deep Sea Drilling 
Project (DSDP) site 588 (26O06.7'S; 
161°13.6'E; southwest Pacific). The low sedi- 
mentation rates (-2 cmilOOO years), character- 

Fig. 2. Maximum pCO, estimates calculated on 
the basis o f  the E, record o f  site 588, where s, 
= ef - bl[C02,,]. The te rm b represents the 
sum of physiological factors, including growth 
rate (77) and cell geometry (18), that  affect 
to ta l  carbon isotope discrimination. In the 
modern ocean, b is highly correlated t o  surface- 
water (77). pCO, values represented 
by the right edge of the shaded band are cal- 
culated w i th  a value o f  27  per m i l  for eL (the 
carbon isotope fractionation due t o  Rub~sco), 

= 0.3 p,mol/l, and an equation for the 
physiological-dependent te rm b calculated 
w i t h  the  upper 95% confidence l imi t  f rom the  
global data set derived f rom al l  available data 
(17, 55) (b[,, ,ill = 4.35 X + 
125.65 X + 108.89). Values on  the 
left  edge o f  the shaded band are calculated 
w i th  a value of 25 per m i l  for sf, = 0.3 
~ m o l l l ,  and an equation for the  physiological- 
dependent te rm b calculated w i t h  the upper 
95% confidence l imi t  f rom the global data set 
(b(,5 per = 4.17 X + 113.79 X 

+ 88.63). The dashed line represents 
pCO, estimates calculated w i t h  an equation for 
the physiological-dependent term b calculated 
w i th  geometric mean regression of the global 
data set. a value o f  25 Der m i l  for 8,. and a 

I '  - [ P 0 2 + ]  ' = 0.3 pmol/ l '  (b(,,,, ,,, ,, 
116.96 X [PO2- ]  + 81.42). Values o f  ~b,, 
were converted t o  pCO, by applying Henrys 
law w i th  K, (the temperature- and salinitv- 
dependent "C2 solubiiity coefficient) values 
(56) calculated assuming a salinity of 35 and 
surface-water temperatures derived f rom S I 8 0  
values for planktonic foraminifera (Fig. IC) .  
Propagation of errors results i n  a 15% uncer- 
ta inty  for calculated pCO, values (57). EAIS, 
expansion of the  East Antarctic ice sheet. 
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istic low organic-carbon contents (<0.1%) (21, 
22). and unifor~n deposition of nannofossil- 
foraminifera1 oozes indicate deposition under 
oligotrophic water inasses similar to conditions 
that characterize this site today. An age model 
\\.as developed by linearly interpolating be- 
tween magnetostratigraphic datums (23). 

Om results (Figs. 1 and 2) show that yCO, 
steadily increased from a low at -14 Ma 
[- 1 80 parts per million by volume ( ppmv)] 
and stabilized at concentrations between 320 
and 250 ppmv during the late Miocene (9 Ma). 
These uniformly low pCO, values are consis- 
tent with middle to late hfiocene allcenone- 
based $0, estimates and trends from other 
localities (16). as well as late Miocene ahno- 
spheiic CO, concentrations estimated fsom sto- 
matal para~ieters of fossil oak leaves (24). In 
addition. other alkenone data suggest thatpCO, 
decreased to about preindustrial levels near the 
end of the Oligocene (16). Therefore. assuming 
that models for C, versus C, plant colnpetition 
are correct, low pCO, should have favored C, 
over C, floras by the early Miocene. However, 
because nearly 15 million years elapsed be- 
tween the onset of low pCO, and the major 
C, plant expansion, it appears thatpCO, level 
alone was not a sufficient trigger of the late 
Miocene event. 

On the basis of phylogenetic data (25); fossil 
pollen evidence (26): and recent n~olecular iso- 
topic data (27); the emergence of the C, pho- 
tosynthetic pathway, as \\,ell as C, grasses, 
occurred before the Miocene. Accordingly; C, 
flora must have represented a component of 
vegetation in the early Neogene (28). For ex- 
ample, as much as a 10 to 30% C, dietaiy 
influence can be inferred from the carbon iso- 
topic co~npositions of early to middle Miocene 
mamnlal tooth enamel (29). Nevertheless, car- 
bon isotopic trends of paleosol carbonate (30- 
32); fossil mamnlal tooth enamel (S1'C,,,) (7, 
30, 32-34), and terrestrially derived organic 
matter (35) from Pakistan, South America, 
North America, and Afiica support an intei~~al 
of substantial ecological change to C,-doininat- 
ed vegetation (grasslands) between about 8 and 
4 Ma. The character and pace of this change 
differed among localities (32); suggesting re- 
gional controls on the expansion of C, flora. 

If the widespread expansion of C, plants 
\\.as not a response to a sharp decrease in yCO,, 
then we nlust seelc another explanation for thk  
change. In general, it is not necessarily 
justified to expect an immediate biological 
response (that is; diversification) after a 
physical forcing event (36). Therefore, it is 
possible that the timing of C, expansion 
was far removed from the conditions that 
promoted it. Alternatively, changes in cli- 
matic conditions, other than pCO,. could 
have forced C, plant expansion. The nlost 
important modern environmental character- 
istics that favor C, plants include aridity 
for C, dicots and strong seasonal precipi- 

tation (that is, warm-season precipitation), 
with coinciding high minimum tempera- 
tures during the gro\ving season for C, 
grasses (12, 37).  Changes in seasonal pat- 
terns of precipitation and temperature in 
key regions during the late Miocene can be 
inferred from a variety of data. For exam- 
ple, e\~olutionary trends in mammals (and 
other fauna) and floras from the middle to 
late Miocene suggest a pattern of iacreas- 
ing seasonality and aridity in North Amer- 
ica, Europe, Africa, Paltistan, and Australia 
(4, 38). Soil carbonate SI8O data from Pa- 
ltistan, Nepal, East Africa, Argentina: and 
the eastern Mediterranean (31, 32; 39), as 
well as tooth enamel S l 8 0  values from 
Argentina and North America (32), in- 
crease, suggesting illcreasing evaporation 
and aridity preceding and accompanying 
the expansion of C, flora. Dust fluxes, 
likely driven by the development of aridity 
in Asia and South America, increased in the 
North Pacific at 7.7 Ma (40) and pealced at 
about 8 Ma in the subtropical South Pacific 
(41). An increase in regional precipitation 
rates in North America (central Oregon and 
the Great Plains) is inferred froin an in- 
crease in the depth of fossil soil calclc 
horizons at 7 to 6 Ma (42). We suggest that 
it was the development of lo\\,-latitude sea- 
sonal aridity and changes in growing con- 
ditions on a global scale; rather than a 
decrease in yCO,, that led to the sudden 
expansion of C, vegetation at -7 Ma. 

Global climates could have been altered 
as a result of tecto~lic processes. For example, 
Ruddiman et 01. (43); among others, have 
championed the role of late Cenozoic plateau 
uplift (southeast Asia and the A~nerican 
West) and other mountain-building events as 
inajor drivers of global climate change. Model 
simulations and paleoclimatic evidence inlply 
that these uplifts altered zonal wind patterns, 
inducing strong seasonality in precipitation 
and aridity in inany mid- to high-latitude 
regions in the Northern Hemisphere (43). 

The timing of the major large-scale uplift 
events is controversial. Many studies have re- 
lied on the maline strontiuin isotope record, for 
example. as an indicator of greater uplift and 
weatheling rates in the Himalaya-Tibetan Pla- 
teau (9). Trends in strontium isotope ratios in- 
dicate that substantial changes in the rate of 87Sr 
increase occurred during mTo episodes in the 
Miocene (44) fsom about 21 to 17 Ma and 12 to 
9 Ma. The first inten~al sho\vs little indication 
of increased sediment yield to the ocean basins 
(45). The second, however: is associated with a 
nunlber of indicators of uplift and increasing 
erosion rates on land (40, 41): including a 
major increase in clastic sediinent flux to the 
Indian Ocean basin (9 to 6 Ma) (45) [as well as 
a probable global increase (46)], an increase in 
Ge:Si ratios in opaline silica (8 to 4 Ma) (47), 
and a marked increase in pelagic phosphorous 

accumulation rates (8 to 4 Ma) (48). Therefore, 
we suggest that it was this late Miocene phase 
of Asian uplift, in conjunction with preexisting 
lo\\~pCO, levels; that ca~~sed  the critical chang- 
es in climate patterns that favored C, plant 
expansion. 
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Hf lsotope Evidence for Pelagic 
Sediments in the Source of 

Hawaiian Basalts 
J. Blichert-Toft,'" F. A. Frey,' F. ALbaredel 

Lead, oxygen, and osmium isotopic ratios measured on Hawaiian basalts can be 
matched with the isotopic ratios inferred for recycled ancient oceanic crust. 
High-precision hafnium isotopic data for lavas from several Hawaiian volcanoes 
identify old pelagic sediments in their source. These observations support the 
recycling hypothesis, whereby the mantle source of ocean island basalts in- 
cludes ancient subducted oceanic crust. Hyperbolic lead-hafnium isotopic re- 
lations among Hawaiian basalts further indicate that upper mantle material is 
not involved in the production of hot spot basalts. 

The apparently fixed position of hot spots on a 
global scale ( I )  and the constant drift velocity 
of their volcalloes (2) with respect to the ~ulder- 
lying asthenosphere suggest that they originate 
deep in the mantle. The high 3He14He ratios of 
ocean island basalts (OIBs) relative to those of 
mid-ocean ridge basalts (MORBs) (3, 4 )  reflect 
a relatively low (U + Th)13He ratio in the OIB 
mantle. which may indicate that the lower man- 
tle is less degassed than the upper mantle (5) 
This iilterpretation, which has provided a inajor 
constraint on models of nlantle convection. 
conflicts rvith evidence that the source of OIBs 
is recycled oceanic lithosphere, inateiial expect- 
ed to be largely degassed. Trace element abun- 
dances ( 6 )  and isotopic ratios of Pb, Nd. and Hf 
(7, 8)  indicate that primitive nlailtle is not the 
plvlcipal source of OIBs. Osrniunl isotopic 
measmeinents suggest that the source of OIBs 
is emiched in a component that was once ex- 
&acted from the mantle as a liq~iid (9). Among 
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the shields of Hawaiian volcanoes, the hvo 
extreme conlpositions are typified by the 
Mauna Kea and Koolau lavas. which fall at the 
opposite end-points of the Kea and Loa com- 
positional trends, respectively (10, 11). The 
18'Os/1880s ratios and 6"O of Koolau basalts 
are higher than in MORB, and these high val- 
ues are charactelistic of aged and altered oce- 
anic crust (9-11). In contrast; the 61S0 of 
Mauna Kea basalts is lower than MORB val- 
ues. possibly reflecting altered lower oceanic 
c1ust (10). 

Oxygen and 0 s  isotopes, however, camlot 
be used to distinguish between altered basaltic 
sections of the oceanic ciust and the overlying 
deep-sea sediineilts ( l l ) ,  because it is the mag- 
nit~ldes of the isotopic shifts induced by these 
&TO compoilents of the oceanic ci-tlst. and not 
their dhection. that are the distinctive features. 
The recycliilg of sediments in the source of 
OIBs is an integral part of the initial f o m l a -  
tion of the recycling hypothesis (12, 13). Sedi- 
ments derived froin continental detritus have 
distinctive \XU and Ce;Pb ratios compared 
with these ratios in basalts; horvever. these ra- 
tios in OIBs have been used to argue both for 
(14) and against (15) recycled contiilental ma- 
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