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Quantitative Assessment of 
Reactive Surface Area of 
Phlogopite During Acid 

Dissolution 
Eric Rufe and Michael F. Hochella Jr. 

The reactive surface area of a dissolving sheet silicate, phlogopite, was quan- 
titatively assessed in experiments performed in the fluid cell of an atomic force 
microscope at room temperature and pH values of 2 and 5.7. Additional as- 
sessment was provided by surface chemical analysis and electron diffraction. 
Dissolution rates of phlogopite {hkO) edges are in the range of moles per 
square meters per second, two orders of magnitude faster than bulk rates for 
this mineral. The basal (001) surfaces also show distinct reactivity, although it 
is short-lived before they become relatively inert. These basal surfaces are 
shown to leach, hydrate, and expand to  an amorphous silica-enriched film. 

Chemical weathering of silicate millerals ex- 
erts substantial influences on processes such 
as neutralization of anthsopogenic acidic in- 
puts, supplying and cycling of llutrients in 
nahxal systems, and long-tern1 climate change 
by acting as a sink for atmospheric CO,. 
Laboratory and field-based studies that deter- 
mine dissolution rates rely on measurements 
of exposed mineral surface area, but unfortu- 
nately, surface area remains one of the most 
difficult parameters to characterize. Most of- 
ten, laboratory rates are normalized to the 
initial surface area measured by a Blzlnaer- 
Emmett-Teller (BET) adsorption isotherm. For 
many silicates, no linear relation exists be- 
tween rate and BET surface area (I), imply- 
ing that not all of the measured surface area 
participates in the reaction at the same rate or 
by the same mechanism. The term "reactive 
surface area" is often used to distinguish the 
portions of the surface that dominantly con- 
tribute to measured fluxes from portions that 
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do not. In the literature, the way in which 
reactive surface area is defined is variable (2). 

To gain insight into the intricacies of min- 
eral dissolution, others have used in situ atomic 
force microscopy (AFM) to examine reactions 
in real time on particular cq~stallographic faces 
or microtopographic features of several nonsili- 
cate ~llillerals (3). However, there are no pub- 
lished in situ AFM studies in which silicate 
dissolutioil rates were measured at room tem- 
perature (4). Our study combines in situ AFM 
obselliations of the dissolution of the mica 
phlogopite [~Mg,(Al,Si,O,,)(OH,F),] at room 
temperature with x-ray photoelectron spectros- 
copy (XPS) and low-energy electron difkaction 
(LEED) analyses to quantitatively assess reac- 
tive surface area (5 ) .  Among silicates, micas 
are best suited for investigating the role of 
reactive surface area because mica dissolution 
has been well characterized by several solution 
studies (6-9) and because their sheetlike struc- 
ture allows for the easy identification of surfac- 
es with greatly different reactivity (10). 

Freshly cleaved phlogopite {00 1 ) surfac- 
es were etched in HF to produce crystallo- 
graphically controlled etch pits (11) and then 
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ID. A. Curnett, W. 8. Kurth, A. Roux, S. J. Bolton, C. F. 
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placed in an AFM fluid cell to which an 
aqueous solution was introduced (12). Disso- 
lution proceeds by the removal of material 
from the etch pit walls (13) (Fig. 1). Etch pits 
retain the same morphology while dissolving, 
indicating that each etch pit wall retreats at 
essentially the same rate. Additionally, no 
new etch pits nucleate on {001} surfaces. We 
have imaged the same region of the surface at 
various times over the course of several days, 
and the volume of phlogopite removed from a 
pal-ticular etch pit is measured at each time 
intellial (14). XPS analysis shows decreasing 
WSi, AlISi, MgISi, and FISi atomic ratios 
within the first 24 hours of reaction. Because 
Mg, Al, and K are preferentially removed with 
respect to Si, the dissolution rates determined 
from these AFM obselliations are compared 
to dissolution rates calculated from Si release 
reported in solution sh~dies. Dissolution rates 
were calculated as 

where AV is the volume of phlogopite re- 
moved from the etch pit. V,,, is the molar 
volume of the phlogopite (based on a com- 
plete formula unit), t is the time intellial, and 
SA is surface area. Dissolution rates of pit 
edges measured in this study were normal- 
ized to the initial SA of the {hkO) edges (15) 
(Fig. 2). However, dissolution rates of micas 
in the literature are normalized to the initial 
BET-measured SA of particles, which in- 
cludes both {001) and {hid) surfaces. To 
compare the rates calculated from an etch pit 
directly to the rates reported in the literature, 
it is necessary to construct an imaginary par- 
ticle with the same edge surface area as that of 
the etch pit. This was achieved by treating each 
etch pit as a "negative" particle with the same 
lateral dimellsio~ls as follo~vs. An etch pit Z 
nanometers deep of size A,,,,,t,,, expands to size 
A,,,,, during time t. Assume that this is equiv- 
alent to a particle Z nanometers thick of size 
A ,,,a, sh~inking to size ALNtlh, du-illg time t. The 
equivalent particle is consh-ucted so that 
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itial = u,,,, + (zp,,) (d) (2) total surface area determined in this way 
provides a geometric estimate of a BET equiv- 

Atotal,final = u ~ ~ . i n i t i a l  + (ZPinitial) (3) alent surface (16). Dissolution rates calcu- 
where A,, is the cross-sectional area of the lated from AFM images were then normalized 
etch pit and P is the etch pit perimeter. The to the total surface area of the equivalent parti- 

cle for each etch nit. The dissolution rates de- 
termined in this way are in the range of reported 
trioctahedral mica dissolution rates, whereas 
dissolution rates normalized to edge surface 
area are -100 times as fast (15) (Fig. 2). 

Long-term in situ AFM imaging of phlog- 
opite in contact with a HCl solution @H 2) 
provides evidence of the reactivity of phlogo- 
pite (001) surfaces. Measured layer thicknesses 
of all layers exposed in a stepped etch pit (such 

I as that shown in Fig. 1) are initially -1.0 nm, 
corresuondin~ to the thickness of one funda- 

I menti layerwin the phlogopite structure. The 
layer thickness of the deem lavers remained 
constant during the 127 hdurs when they were 
in contact with the HCl (pH 2) (15). However, 
between 39 and 63 hours, the thickness of the 
top layer increased from - 1 .O to - 1.8 nm (Fig. 

1 
3). After 127 hours, tip-induced erosion was 
observed on the top layer only (15). Material 
was removed with continued scanning, leaving 
a persistent, uneven film with an average thick- 
ness of - 1.2 nm. This increase in layer thick- 
ness was observed at two other locations on the 
sample surface and is a pervasive feature. It is 
unlikely that the solution in the fluid cell 
reached saturation with respect to a secondary 
phase, ruling out the possibility of precipitation 
accounting for the increase in layer thickness 
(17). XPS performed after the sample was in 

-9.0 r-. .. -. -. .- 

I A -9.5 ! 

Fig. 1. AFM image of phlogopite (001) surfaces. 
(A) After the surfaces were etched in HF, show- 
ing typical initial morphology of etch pits. The 
darkest layer is the highest topographic layer 
(the original (001) surface before etching). Each 
successive lighter layer is 1.0 nm lower. The pits 
are triangular and flat bottomed. The same 
etch pit after the phlogopite was in contact 
with HCL (pH 2) for (B) 39 and (C) 63 hours. All 
three images are the same scale; each image is 
625 nm wide. 

Fig. 2. Comparison of phlogopite dissolution 
rates (open circles and triangles) determined in 
our study to  reported phlogopite (solid circles) 
(7) and biotite (crosses) (6-8) dissolution 
rates. Dissolution rates of biotite (a closely 
related triodahedral mica) are included be- 
cause there are few published phlogopite rates. 
Open triangles indicate rates normalized to the 
{hkO} edge surface area. Open circles indicate 
rates normalized to  total surface area. Average 
{hkO} SA normalized rates are 3.7 2 1.3 X 
10-lo mol m-2 s-' at pH 2 and 1.4 2 0.5 X 
10-lo mol m-' s-' at pH 5.7. Average total SA 
normalized rates are 3.5 2 2.3 X mol 
,-2 -1 s at pH 2 and 2.4 2 1.2 X lo-" mol 
,-2 -1 s at pH 5.7. 

contact with HCl @H 2) for 127 hours reveals 
that atomic concentrations of K, Al, Mg, and F 
are severely depleted and the top layer is com- 
posed of essentially only Si and 0 (18). Not 
surprisingly, LEED analysis performed on this 
sample yielded no dimction spots, indicating 
that the surface region of the sample is now 
amorphous. 

The observed layer volume change may be 
explained by depolymerization and repolymer- 
ization reactions occurring during leached 
layer formation. The general leached layer 
model consists of three steps (19). The first, 
sometimes referred to cation exchange, in- 
volves the rapid exchange of alkali and aka- 
line-earth cations for hydrogen or hydronium. 
The second involves depolymerization reac- 
tions, in which bridging Si-0-Si and Si-0-A1 
linkages are hydrolyzed, allowing the layer to 
expand. The third step is spontaneous repo- 
lymerization reactions in which neighboring 
Si-OH groups cross-link to reform Si-0-Si 
linkages, ejecting hydrogen and water. This 
may cause the layer to contract. 

Mica dissolution is thought to be dominated 
by an edge attack mechanism (6-9). In acidic 
solution, interlayer and octahedral cations are 
selectively leached through {hM)) surfaces 
forming an altered silica-enriched rim. Dissolu- 
tion reaches steady state when the removal of 
silica from the altered edges is matched by 
diffusion of interlayer and octahedral cations 
parallel to the sheets, through the altered rim. 
However, acid hydrolysis studies of expandable 
clays provide evidence for the leaching of oc- 
tahedral cations perpendicular to the sheets, 
through the ditrigonal cavities of the {001) 
surface by a mechanism re fmd  to as gallery 
access (20). Our observations that the {001) 

I 
- 0 hours 

.. ---39 hours 
!: 
i l  3 
! :: - - - - 63 hours : ;: 
I .  
, ! I  

- 1 0 1 2 3 4 5  
Z Height relative to deepest pit [nm] 

Fig. 3. Distribution of topography in images 
shown in Fig. 1. Z height 0.0 is the topographic 
level corresponding t o  the floor of the etch pit 
seen in Fig. 1. Peak separation measures step 
height (or Layer thickness). The peaks at 0.0 and 
1.0 nm remain constant, indicating that these 
deeper layers retain the same thickness. The 
peak representing the top layer shifts from 3.0 
t o  3.8 nm, indicating that this layer has ex- 
panded from 1.0 t o  1.8 nm in thickness. 
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surface uildergoes a compositional change and 
expansion indicate that exposed (001) surfaces 
also participate in the dissolution process, at 
least initially. 

This study has provided directly measured 
dissolution rates for surfaces on phlogopite, a 
silicate mineral, at room temperature. It has also 
shonn that all phlogopite surfaces are reactive, 
including its basal surfaces. Each surface of 
phlogopite, or any other mineral, must behave 
according to the particular atomic structure, 
composition, and microtopogaphy of that sur- 
face. Furthermore, the dissolution of each sur- 
face has a temporal dependence, although this 
effect may only be substantially variable in the 
early stages of dissolution. Finally, external fac- 
tors must also come into play (for example, 
local conditioils and proximal flow regimes), 
especially in natural settings (21). The concept 
and use of reactive surface area in silicate dis- 
solution studies is now changing. It seems that, 
at least in the most favorable cases: the reactiv- 
ity of various surface components can be cata- 
loged and quantified. This opens the door to a 
new generation of rate equations and, ultimate- 
ly, to a much better understanding of how min- 
erals dissolve and influence our enviromnent. 
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Late Miocene Atmospheric CO, 
Concentrations and the 
Expansion of C, Grasses 

Mark Pagani,"? Katherine H. Freeman, Michael A. Arthur 

The global expansion of C, grasslands in the late Miocene has been attributed 
t o  a large-scale decrease in  atmospheric carbon dioxide (CO,) concentrations. 
This triggering mechanism is controversial, in part because of a lack of direct 
evidence for change in the partial pressure of CO, (pCO,) and because other 
factors are also important determinants in controlling plant-type distributions. 
Alkenone-based pCO, estimates for the late Miocene indicate that pCO, in- 
creased from 14 t o  9 million years ago and stabilized at preindustrial values by 
9 mill ion years ago. The estimates presented here provide no evidence for major 
changes in pCO, during the late Miocene. Thus, C, plant expansion was likely 
driven by additional factors, possibly a tectonically related episode of enhanced 
low-latitude aridity or changes in seasonal precipitation patterns on a global 
scale (or both). 

Instability in Miocene climates is detailed by patteins are thought to reflect changes in CO, 
extensive stable isotope records ( I )  and is concentrations (7-9) or tectonically driven 
associated with turnovers in marine (2, 3) and readjustments in ocean circulation (6, 10). In 
terrestrial biota (4), sea-level variability (j), particular, high-latitude climates gradually 
and changes in surface- (2) and deep-water warmed during the early to iniddle Miocene 
circulation ( 6 ) .  Short- and long-term climatic (-24 to 15 million years ago (Ma)] and then 
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