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(predicted mass 2755, observed 2755), N,06-di-
acetyl-MurNac-GlcNac pentapeptide (predicted mass 
2828, observed 2826), murein-tetrapeptide-murein-
pentapeptide (predicted mass 3990, observed 3995), 
(murein-tetrapeptide)2-murein-pentapeptide (pre­
dicted mass 5194; observed 5196), and (murein-
tetrapeptide)4 (predicted mass 6285, observed 6286). 

21. W. W. Navarre, H. Ton-That, K. F. Faull, O. Schnee-
w i n d j . Biol. Chem. 274, 15847 (1999). 

22. Plasmid pGL4 contains the coding sequence of SEB-
SPA490_524, which was released from pSEB-SPA490_524 

by Eco Rl-Bam HI digestion and inserted into the pT181 
derivative pWil5. S. aureus SM317 (pGL4) was grown on 
TSB tet agar. A plasmid library of S. aureus OS2 chro­
mosomal DNA was obtained by partial digestion with 
Sau 3A1. DNA fragments of 3 to 5 kb were purified and 

Serotonin [5-hydroxytiyptamine (5-HT)] is a 
platelet-stored vasoconstrictor that also acts 
as a transmitter in the nervous system to 
modulate a wide spectrum of behaviors (7). 
The actions of 5-HT are terminated by active 
transport (2). Whereas 5-HT actions are me­
diated by > 15 different types of receptors, a 
single 5-HT transporter (SERT) is responsi­
ble for extracellular 5-HT clearance (3). 
SERT activity is blocked by cocaine and 
tricyclic antidepressants. Serotonin-selective 
reuptake inhibitors (SSRIs) like fluoxetine 
(Prozac) preferentially block SERTs and en­
hance serotonergic signaling in affective dis­
orders (2, 4). The amphetamines are sub­
strates for SERTs, as well as for dopamine 
(DA) and norepinephrine (NE) transporters 
(DATs and NETs, respectively) (5) and can 
trigger SERT-mediated release of 5-HT (5-
8). Repeated administration of amphetamines 
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cloned into Bam Hl-digested pC194-mcs, which con­
tains the multiple cloning site of pUC19 inserted into 
the Hind III site of pC194. SM317 (pGL4) was trans­
formed with the pC194-mcs plasmid library and trans-
formants were selected on TSB tet-cm agar. 

23. The DNA insertions of pGL1631 and 1834 were 
mapped and sequenced by synthesizing oligonucleo­
tide primers. The primers for the amplification of srtA 
from the chromosomal DNA of S. aureus strains OS2 
(pGL1897) and SM317 (pGL1898) were 5'-AAG-
GATCCAAAAGGAGCGGTATACATTGC-3' and 5'-
AAGG ATCCTACCT T T TCCTCTAGCTG AAG-3'. 

24. In another report we show that purified SrtA protein 
catalyzes the in vitro transpeptidation of substrates 
bearing an LPXTG motif (H. Ton-That, G. Liu, S. K. 
Mazmanian, K. F. Faull, O. Schneewind, in preparation). 

sensitizes monoaminergic synapses to subse­
quent psychostimulant challenge (9), which 
may involve modulated protein kinase cas­
cades {10). Alterations in SERT activity and 
binding site density (11) and SERT gene 
polymorphisms (12) have implicated the 
transporter in anxiety, depression, suicide, 
autism, and substance abuse. Recent findings 
with transgenic mice (13) support an impor­
tant role for 5-HT and SERTs in the behav­
ioral actions of cocaine and amphetamine. 

SERT expression can be rapidly modulat­
ed by receptor stimulation, second messenger 
production, and kinase activation (14-16). 
Suppression of SERT activity accompanying 
protein kinase C (PKC) activation (17) arises 
from a loss of 5-HT uptake capacity (Vmax). 
The loss in 5-HT uptake capacity correlates 
with a loss of surface-expressed SERTs (7 7), 
similar to the PKC modulation of homolo­
gous 7-aminobutyric acid (GABA), DA, and . 
NE transporters (18). PKC activators and 
phosphatase inhibitors induce SERT phospho­
rylation (19) with a similar time course and 
kinase antagonist sensitivity as observed for 
changes in 5-HT transport. 

25. Abbreviations for the amino acid residues are as 
follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, 
His; I, lie; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gin; 
R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 
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We investigated whether the regulation of 
SERTs was influenced by transport and wheth­
er SERT ligands differentially influenced 
SERT regulation. Figure 1A shows that PKC-
mediated SERT phosphorylation in transfected 
human embryonic kidney-293 (HEK-293) cells 
was substantially diminished if assayed in the 
presence of the transported neurotransmitter, 
5-HT. SDS-polyacrylamide gel electrophoresis 
(SDS-PAGE) analysis of immunoprecipitates 
from [32P]P04-labeled cell extracts (20) re­
vealed a three- to fivefold stimulation of human 
SERT (hSERT) phosphorylation after phorbol 
12-myristate 13-acetate ((B-PMA) application. 
This stimulation was abolished by coapplica-
tion of PKC antagonists. In the presence of 
5-HT (1 fxM), SERT phosphorylation trig­
gered by phorbol esters was also substantially 
blunted. At low concentrations of (B-PMA 
(for example, 10 nM), 5-HT essentially abol­
ished phorbol ester-induced SERT labeling, 
At 200 nM (B-PMA, where labeling of SERTs 
is maximal, we consistently achieved 40 to 
60% inhibition of SERT phosphorylation at 
maximal concentrations of 5-HT (1 fxM) with 
a median effective concentration (EC50) of 
70 nM (Fig. IB). 

If the actions of 5-HT on SERT phospho­
rylation arise as a consequence of transport, 
then an intrinsic homeostatic loop might be 
present to link transporter expression to ex­
tracellular amine availability, and coincuba-
tion with SERT antagonists should block this 
effect. Indeed, the SERT-selective tricyclic 
antidepressant imipramine (1 fxM) or the 
SSRIs paroxetine (1 \iM) and citalopram (1 
jxM) blocked the ability of 5-HT to limit 
PKC-dependent SERT phosphorylation (Fig. 
1C). This effect was selective for SERT an­
tagonists, as neither the DAT inhibitor GBR-
12909 nor the NET antagonist nisoxetine 
could affect the ability of 5-HT to blunt 
SERT phosphorylation (Fig. 1C). There are 
no known 5-HT receptor subtypes on HEK-
293 cells, and to our knowledge, 5-HT does 
not induce acute changes in cyclic adenosine 
5'-monophosphate, inositol trisphosphate, or 
intracellular Ca2+ levels in these cells. More­
over, the ability of 5-HT to diminish PKC-
dependent SERT phosphorylation was not 
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Many psychotropic drugs interfere with the reuptake of dopamine, norepi­
nephrine, and serotonin. Transport capacity is regulated by kinase-linked path­
ways, particularly those involving protein kinase C (PKC), resulting in trans­
porter phosphorylation and sequestration. Phosphorylation and sequestration 
of the serotonin transporter (SERT) were substantially impacted by ligand 
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amphetamines, prevented PKC-dependent SERT phosphorylation. Nontrans-
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affected by coincubation with the 5-HT re- 
ceptor antagonists mesulergine, clozapine, or 
ketanserin (Fig. ID). Thus, it is unlikely that 
5-HT receptors are involved in the actions of 
5-HT to blunt SERT phosphorylation. These 
results suggest that intrinsic SERT activity 
governs the transporter's phosphorylation. 

We evaluated whether the activity depen- 
dence of SERT phosphorylation was revealed 
by other SERT substrates. The SERT sub- 
strates D-amphetamine and fenfluramine (5- 
8, 21) reduced SERT phosphorylation to a 
similar extent as 5-HT (Fig. 2A). Unlike 
5-HT or amphetamines, DA and NE are poor 
substrates for SERTs and were found to be 
ineffective at modulating SERT phosphoryl- 
ation at concentrations where 5-HT substan- 
tially reduces PKC-mediated SERT labeling 
(Fig. 2A). 

Substrate permeation through SERTs re- 
quires extracellular Na+ and C1- (Fig. 2B) 
(3, 22). Individual substitution for Na+ or 
C1- partially reversed the ability of 5-HT to 
diminish SERT phosphorylation, and an al- 
most complete reversal was achieved when 
both ions were substituted together. Substitu- 
tion for these ions had no effect on SERT 
phosphorylation in the absence of 5-HT (23). 
The Michaelis constant K, for 5-HT trans- 
port is substantially higher than the EC50 for 
5-HT suppression of PKC-mediated SERT 
phosphorylation (Fig. lB), suggesting that 
phosphorylation may be closely linked to 
high-affinity steps in the translocation cycle, 
such as initial substrate binding (6, 24). Im- 
portantly, 5-HT-preloading experiments 
(Fig. 2C) revealed that the suppression of 
phosphorylation was not a consequence of 
an increase in intracellular 5-HT (20). We 
also found no evidence that 5-HT applica- 
tion alters cellular PKC activity (25). Rath- 
er, suppression of SERT phosphorylation 
requires transport activation that is coincident 
with PKC activation. 

PKCs are not the only protein kinases that 
phosphorylate SERTs in HEK-293 cells (19). 
The SERT phosphorylation that arises from 
PKA activation by cholera toxin is insensitive 
to PKC antagonists, as is most of the phos- 
phorylation achieved after protein phospha- 
tase 2A inhibition with okadaic acid. 5-HT 
had no influence on the phosphorylation sta- 
tus of SERT triggered by cholera toxin (Fig. 
2D), and phosphorylation of SERT arising 
from okadaic acid treatment was diminished 
only to a level achieved with PKC inhibitors 
[see table 2 of (19)], consistent with the 
unmasking of other cellular kinases that tar- 
get SERT in a 5-HT-independent manner. 

Activation of PKC results in a loss of 
transport capacity, sequestration of transport- 
er proteins, or phosphorylation of multiple 
members of the Na+/ClP coupled neurotrans- 
mitter transporter gene family (or all of these 
effects) (15, 17, 18, 26-30). If phosphoryl- 

ation after PKC activation participates in 
transporter sequestration, then the loss of 
phorbol ester-triggered phosphorylation of 
SERT should also diminish the effects of 
phorbol esters on SERT trafficking. We thus 
biotinylated surface SERTs (31) to explore 
the impact of extracellular substrate on trans- 
porter surface expression. Treatment with 
P-PMA (1 pM) for 30 min induced a 30 to 
40% reduction in surface pools of SERT 
protein and a concomitant increase in nonbi- 
otinylated intracellular SERT protein, indic- 
ative of transporter sequestration (Fig. 3A). 
5-HT was able to prevent alterations in SERT 
surface expression achieved with P-PMA. 
Critical domains for PKC-mediated phospho- 
rylation and sequestration may be differen- 
tially exposed during substrate translocation. 
GAT1 GABA transporters are less sensitive 

GBR12909 + 5HT 
GBR12909 

cocaine + 5HT 
COQllne 

Imlpnmlne + SHT 
imipnmine 

cltalopram + 5HT 
citalopram 

psmxetlne + 5HT 
pamxetine 

5HT 
control 

to trypsin proteolysis if GABA is present 
(32), implying altered transporter structure 
upon substrate binding or translocation. 
DATs and SERTs display altered accessibil- 
ity to inactivating methane thiosulfonate re- 
agents after ligand occupancy (33). Alterna- 
tively, the activities or localization of an as- 
sociated kinase or phosphatase (34) could be 
altered by transport (Fig. 3B). Phosphoryl- 
ation suppression might also rely on the ex- 
cess ion flow that occurs during 5-HT trans- 
location (35). Because PKC-dependent SERT 
regulation occurs under voltage clamp (1 7) 
and P-PMA-triggered SERT phosphoryl- 
ation is insensitive to 30 min of ouabain 
treatment (1 mM) (23), it is unlikely that the 
effects we report are indirect consequences of 
membrane depolarization or a rundown of ion 
gradients. 

B 
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Fig. 1. 5-HT modulation of phorbol ester-triggered hSERT phosphorylation in stably transfected 
HEK-293 cells. (A) Effect of coincubation of 5-HT (1 FM) on dose-dependent phosphorylation of 
SERT as revealed by immunoprecipitation (20), SDS-PACE, and autoradiography (top panel). The 
bottom panel presents the average band intensity from three experiments. Error bars indicate SEM. 
(B) SERT phosphorylation induced by P-PMA (200 nM) for 30 min was evaluated as in (A), using 
different concentrations of 5-HT (top and bottom panels). hSERT activity (38) was assessed as a 
function of increasing concentrations of 5-HT in the presence of 200 nM P-PMA (bottom panel). 
Error bars indicate SEM. The ECSO for the 5-HT block of hSERT phosphorylation was 68 2 21 nM. 
The K, for 5-HT transport was 495 2 60 nM. Results are mean values from three experiments. The 
effect of 5-HT on SERT phosphorylation at 10 to 500 nM P-PMA was statistically significant (P < 
0.05, Student's two-tailed t test). (C) Sensitivity of the 5-HT-mediated reduction in hSERT 
phosphorylation to amine transporter antagonists (1 pM). (D) Lack of sensitivity of the 5-HT- 
mediated reduction in hSERT phosphorylation to 5-HT receptor antagonists (50 pM). For (C) and 
(D), antagonists were added 20 min before treatment with P-PMA (200 nM) for 30 min or 
coapplication of P-PMAIS-HT (1 pM). Experiments presented in (C) and (D) were repeated with 
essentially equivalent results. 
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Control o f  transporter surface expression this regulatory mechanism may be o f  general number o f  psychostimulant targets available 
by  external substrates represents a novel ho- relevance for other transporters. Amphet- to a subsequent stimulus. Given the homolo- 
meostatic mechanism that may serve in the amines substitute for 5-HT in suppressing gy among SERTs, NETS, and DATs, i t  is 
neuron to fine-tune transport capacity to PKC-mediated SERT phosphorylation. Such possible that altered trafficking o f  amine 
match demands imposed by  fluctuating levels action could override homeostatic transporter transporters may represent one o f  many mo- 
o f  neurotransmitter. Because extracellular sequestration processes and provide for psy- lecular changes underlying psychostimulant 
G A B A  can impact GAT1 trafficking (36), chostimulant sensitization by  increasing the sensitization and withdrawal mechanisms 
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Fig. 2. Specificity of 5-HT-modulated hSERT phos- 
phorylation. (A) Labeled cells were stimulated c hSERT 

with P-PMA, and different biogenic amines and - 
amphetamines (1 pM) were tested to  determine c r + + + - -  
their ability to  mimic the activity of 5-HT to  blunt 
hSERT phosphorylation. All agents were added 15 min before and during @-PMA application (200 3000 
nM) for 30 min, and hSERT phosphorylation was evaluated as in Fig. 1. Asterisks indicate $ 2500 
significant difference (P < 0.05, Student's two-tailed t test) in the hSERT phosphorylation level 5 - 
relative to  that achieved with P-PMA alone. Error bars indicate SEM. (B) Influence of extracellular 

f' ion replacement on 5-HT modulation of P-PMA-triggered hSERT phosphorylation (top two 
panels) was evaluated in isotonic KRH buffer or in buffer with Nac, Cl-, or both Na' and CIA 4 'Oo0 
substitution (38). These substitutions were also monitored for their impact on hSERT activity 500 

(bottom panel) (38). Error bars indicate SEM. Superscript designations in the bottom panel denote 0 
+ - + . , I  the concentration of 5-HT in the incubations where activity was assessed (a = 10 nM; b = 1000 

nM). 5-HT significantly blunted P-PMA-induced SERT phosphorylation but not in media substi- OK + t - - - - 
tuted with Na' and C I  (P < 0.05, Student's two-tailed t test). (C) Previous cell loading with CTY - - + + - - 
5-HT (10 pM) for 1 hour does not influence phorbol ester-triggered SERT phosphorylation, 
whereas concurrent 5-HT application (1 pM) blunts labeling. (D) 5-HT (1 pM) selectively impacts PKC-dependent SERT phosphorylation. Agents tested 
were P-PMA (200 nM), cholera toxin (1 nglml), or okadaic acid (1 pM), all for 30 min. Experiments presented in (C) and (D) were repeated with 
essentially equivalent results. 
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amines to  modulate PKC-dependent hSERT phosphorylation and trafficking. SERTs in the process of 
translocating substrates may adopt conformations incompatible with PKC-dependent phosphoryl- 
ation and sequestration. Alternatively, substrate translocation may alter phosphatase or accessory 
protein access to  PKC-dependent SERT phosphorylation sites, thereby limiting phosphorylation and 
sequestration. T, transporter; P, phosphorylation. 
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(37) Nollper~lleant hgands l ~ k e  the SSRls 
that prebent 5-HT permeation may have ther- 
apeutic utility in disease states, not only by 
preventing 5-HT reuptake but also by allow- 
ing kinase-linked signaling pathways to shift 
the cellular distribution of SERTs. 
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