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A computational method is proposed for inferring protein interactions from 
genome sequences on the basis of the observation that some pairs of interacting 
proteins have homologs in another organism fused into a single protein chain. 
Searching sequences from many genomes revealed 6809 such putative protein- 
protein interactions in  Escherichia coli and 45,502 in  yeast. Many members of 
these pairs were confirmed as functionally related; computational filtering 
further enriches for interactions. Some proteins have links t o  several other 
proteins; these coupled links appear t o  represent functional interactions such 
as complexes or pathways. Experimentally confirmed interacting pairs are 
documented in a Database of lnteracting Proteins. 

The lives of biological cells are controlled by 
interacting proteins in metabolic and signal- 
ing pathways and in complexes such as the 
molecular machines that synthesize and use 
adenosine triphosphate (ATP), replicate and 
translate genes, or build up the cytoskeletal 
infrastructure (1). Our knowledge of protein- 
protein interactions has been accumulated 
from biochemical and genetic experiments, 
including the widely used yeast two-hybrid 
test (2). Here we ask if protein-protein inter- 
actions can be recognized from genome se- 
quences by purely computational means. 

Some interacting proteins such as the Gyr 
A and Gyr B subunits of Escherichia coli 
DNA gyrase are fused into a single chain in 
another organism, in this case the topoisom- 
erase I1 of yeast (3). Thus, the sequence 
similarities of Gyr A (804 amino acid resi- 
dues) and Gyr B (875 residues) to different 
segments of the topoisomerase I1 (1429 resi- 
dues) might be used to predict that Gyr A and 
Gyr B interact in E. coli. 

To find other such putative protein inter- 
actions in E. coli. we searched the 4290 
protein sequences of the E. coli genome ( 4 )  
for these patterns of sequence homology (5). 
We found 6809 pairs of nonhomologous se- 
quences, both members of the pair having 
significant similarity (6) to a single protein in 

many fewer interactions in a functioning cell; 
roughly 2 to 10 interactions for each protein 
does not seem unreasonably many. 

Each of these 6809 pairs is a candidate for 
a pair of interacting proteins in E. coli. Five 
such candidates are shown in Fig. 1. The first 
three pairs of E. coli proteins were among 
those easily determined from the biochemical 
literature in fact to interact. The final two 
pairs of proteins are not known to interact. 
They are representatives of many such pairs 
whose putative interactions at this time must 
be taken as testable hypotheses. 

We devised three independent tests of in- 
teractions predicted by the method we term 
domain fusion analysis, each showing that a 
reasonable fraction may in fact interact. The 
first method uses the annotation of proteins 
given in the SWISS-PROT database (7). For 
cases where the interacting proteins have 
both been annotated, we compare their anno- 
tations, looking for a similar function for both 
members of the pair. Similar function would 

Fig. 1. Five examples 
of pairs of E. coli pro- 
teins predicted t o  inter- 
act by the domain fu- 
sion analysis. Each pro- 
tein is shown schemat- 

imply at least a functional interaction. Of the 
3950 E. coli pairs of known function, 2682 
(68%) share at least one keyword in their 
SWISS-PROT annotations (ignoring the key- 
word "hypothetical protein"), suggesting re- 
lated functional roles. When pairs of annotat- 
ed E. coli proteins are selected at random, 
only 15% share a keyword. In short, of the E. 
coli pairs that the domain fusion analysis 
turns up as candidates for protein-protein in- 
teractions, more than half have both members 
with a similar function; the method therefore 
seems to be a robust predictor of protein 
function. Where the function of one member 
of a protein pair is known, the function of the 
other member can be predicted. Performing a 
similar analysis in yeast turns up 45,502 pro- 
tein pairs. Of the 9857 pairs of known func- 
tion, 32% share at least one keyword in their 
annotations compared with 14% when pro- 
teins are selected at random. 

The second test of the interactions predict- 
ed by the domain fusion analysis uses as 
confirmation the Database of lnteracting Pro- 
teins (8) .  This database is a compilation of 
protein pairs that have been found to interact 
in some published experiment. As of Decem- 
ber 1998, the database contained 939 entries, 
724 of which have both members of the pair 
listed in the ProDom database. Of these 724 
pairs, we found 46 or 6.4% linked by Rosetta 
Stone sequences. We expect this percentage 
to rise as more genomes are sequenced. 

The third test of domain fusion predic- 
tions is by another computational method for 
predicting interactions (9 ) ,  the method of 
phylogenetic profiles, which detects func- 
tional interactions by analyzing correlated 
evolution of proteins. This method was ap- 
plied to the 6809 interactions predicted by the 
domain fusion analysis for E. coli proteins. 
Some 321 of these predictions (-5%) were 
suggested by the phylogenetic profile method 
to interact, more than eight times as many 
interactions in common as for randomly cho- 
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sell sets of interactions. Gi1-en that the do- 
lllaill fusio11  neth hod and the phylogenetic 

Fig. 9. Reconstruction of two AroH YDlB - AroK 
metabolic pathways in E,  coli, AroF 
with only interactions predicted AryG 
by the domain fusion method. 
Pathways A and C are the known AroB 
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1%-here A is predicted to interact n it11 B and B 
with C. and so forth. That is, we asked if the 
domain fusion method call hirn lip complexes 
of proteins or p r o t e i ~ ~  patha.ays. -4s Fig. 2 
sholvs; suggestive illfolnlatio~l on both path- 
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other proteins of the pathway It a 
is possible that these groupings 
represent multiprotein complexes. Enzymes stacked together (for example, AroK and AroL) are 
homologs. 

ways and colllplexes did elnerge from linked 
pairs of E. coli proteins. The pathn.ays for 
shilcinlate biosynthesis and purine biosynthe- 
sis are sl~ol?-n in Fig. 2 (pathways A and C. 
respectively), The enzymes i11 these pathn ays 
for m hich lilllcs were found to other lllelllbers 
of the same patlnvay are shonn in bold 13-pe. 
The precise links suggested by Rosetta Stone 
sequences are sho\i-n in Fig. 2 ( B  and D).  
Some of these discovered links are bet\veea * -2"- 
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in regulation of expression: i11 this case. 
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1 Loop deletion Fig. 3. A model for the evolution 
of protein-protein interactions. 
The Rosetta Stone model starts 
with the fusion of the genes that 
code for the noninteracting do- 
mains A and B, leading to  expres- 
sion of the fused two-domain 
protein AB (79). In the fused pro- 
tein, the domains have a rela- 

linked c~elnbers of a pair xould not neces- 
sarily bind to each other (see belo\$ ). 

To evaluate the reliability of donlain fu- 
sion predictiolls of protein interactions. it is 
helpfi~l to consider n h y  the method should 
work in the first place. This emerges from 
co~lsiderations of protein affinity. It f o l l o ~ ~  s 

tively high effective concentra- Hetero-dimer Homo-dimer 
tion, and relatively few muta- 
tions create a primitive binding site between the domains that is optimized by successive 
mutations. In the second line, the interacting domains are separated by recombination with 
another gene to  create an interacting pair of proteins A and B. An interacting pair of proteins A and 
B can be created by fission of a protein, so that the preliminary fusion step is not essential to  the 
Rosetta Stone hypothesis. The lower righthand step shows another possible mutation, a loop 
deletion that leads to  a domain-swapped homodimer. This evolutionary path to homooligomers 
has been discussed earlier (20) and is the analog for homooligomers of the evolutionary path 
suggested here for heterooligomers. 

from the laws of themlodynamics that the 
fusion of protein dolllaills A and B into a 
single protein chain can profoundly ellhallce 
the affinity of -4 for B. The reason for this is 
that fusioll greatly reduces the entropy of 
dissociatioll of A ~ i t h  B, thereby reduciag 
the associati011 free energy of A to B (10). 
This reduction in entropy is often expressed 
as an increase i11 the effective collcelltratioll 
of A n ith respect to B. The concelltratiolls of 
proteills in E. coli cells tend to be on the order 
of lllicrolllolar ( I  I ), M hereas the effective 

pothesis for evolution of protein interactions, n.hic11 cases the dolllain fusion nlethod will 
Also in suppolt of the Rosetta Stone path\$-ay miss pairs of interacting proteins (false neg- 
is the observation that protein-protein inter- atives) and in \vhich cases it will turn up false 
faces have strong si~nilarity to illterdomaill candidates for interacting pairs (false posi- 

collcentratiolls of fused proteins call be -mil- 
limolar or even greater (12). Put another Ivay, 

interfaces ~vithin single protein ~nolecules tives). One reason for lllissi~lg illteractiolls is 
(14). that many protein-protein interactions may 

the standard free energy of dissociatioll for 
protein subunits fro111 a corilples is typically 8 
to 20 kcalPmo1 at 27°C (col~esponding to 
dissociatioll constants of 1 0 F t o  hI) 
(13) and call be reduced by - 10 kcalFmo1 

It is illlportallt to realize that the domain have evolved through other mechanisms. 
fusion analysis nlalces tv o distinct predic- such as gradual acculllulation of mutations to 
tions. First. it predicts protein pairs that have e\-olve a bindi~lg site. 111 these cases, there 
related biological functions-that is. proteins never was a fusion of the illteractillg proteins, 
that participate in a C ~ I I I I I I ~ I I  structural corn- and so no Rosetta Stone sequence can be 

whc11 the subunits are fused illto a single 
protein chain. Because affinity between pro- 
teins -4 and B is greatly enhanced \vhen A is 
fused to B. some interacting pairs of proteins 
may have evolved from primordial proteins 

plex. llletabolic pathway. or biological pro- found. Second, even in other cases where the 
cess. Prediction of fimction is robust: For E, interacting partners were once fused? the 
coli, general fullctiollal si~nilarity \T as ob- fiised protein may have disappeared during 
sen-ed i11 over half the testable predictions. the course of evolution? and so there is 110 

Second. the method predicts potelltial pro- Rosetta Stone relic remailling to decipher 
that included the interacting dolllaills A and B 
on the same polypeptide. as sho\vn in Fig. 3. 
\Ye tell11 this pathway- tile Rosetta Stone hy- 

tein-protein interactions. For this luore spe- billdillg partnerships. As lllore genomes are 
cific prediction. the co~lsiderations of protein sequenced. however, there is a higher chance 
affinity and e\,olution aid understallding in of filldillg Rosetta Stone sequences. 
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Fig. 4. The detection of "promis- -- 
cuous" domains for filtering o f  
false interactions by the domain 
fusion method. For each protein 
domain (as defined in the Pro- 
Dom database), we calculated 'Promiscuous' d o m a ~ n s  
the number of Rosetta Stone 40 
links that  could be found t o  oth- 
er domains. Plotting this distri- 
bution shows that  for most  do- 
mains (-95%), only a few Ro- 
setta Stone links are found. For 
the remaining -5% of domains, 
many links are found. These 
"promiscuous" domains are do- 
mains such as the  SH3 domains 
and ATP-binding cassettes that  
are found in  many otherwise un- 
related proteins. 
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False predictions of physical interac- only 5% of all domains from our domain 
tions may be made by the domain fusion fusion predictions. we can remove the major- 
analysis in cases where domains are fused ity of falsely predicted interactions. When 
but not interacting. This may be so when this type of filtering is applied to the 3531 
proteins have been fused to regulate coex- Rosetta Stone links of E. coli found with the 
pression or protein signaling. For these cas- ProDom analysis. the number is reduced to 
es. the "interaction" of the proteins can be 749. Although dropping the number of pre- 
a functional interaction rather than a phys- dictions, this filtration step increases the like- 
ical interaction. Other false predictions can lihood that predicted links represent true 
arise because the domain fusion analysis physical interactions by 47% over the unfil- 
cannot distinguish between homologs that tered predictions. Also. after filtering out pro- 
bind and those that do not. As an example, miscuous domains? the average false positive 
consider the signaling domains SH2 and rate in E. coli due to the inability to distin- 
SH3. The kinase domain and the SH2 and guish homologs drops to 65%. The practical 
SH3 domains of the src homology kinase result of domain fusion analysis is that many 
interact with one another in the src mole- protein interactions can be predicted from 
cule (15). but homologs of these domains genome sequences. permitting experimental- 
are found in many other proteins, and it is ists to focus on promising interactions. 
certainly untrue that all SH2 domains inter- In summary. genomic information opens 
act with all SH3 domains. A similar prob- new paths to biochemical discoveries. The 
lem crops up with epidermal growth factor finding in a genome of many pairs of protein 
and immunoglobulin domains. The false sequences A' and B' that are both homologs 
positive rate in E. coli due to the inability to to a single sequence AAB in another genome 
d~stinguish homologs is about 82% (16) .  suggests the possibility that A' and B' are 
That is, although the domain fusion analy- binding partners and provides robust func- 
sis gives a robust prediction of protein tional information about A' and B'. System- 
function of the form "A is functionally atic searches of this sort may lead to identi- 
linked to B." only a subset of these putative fications of new pathways and protein com- 
interactions represent physical interactions plexes in organisms. 
between proteins. 

To quantify and reduce errors in predict- 
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