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Einstein condensate gave rise to superradi- 
ance based on coherent extesnal motion. The 
extremely low threshold in light intensity ( -  
1 mW/cm2 for our conditions) should be 
taken into account in BEC experiments that 
use optical probing and manipulatiou with 
off-resonant light. The simultaneous superra- 
diant emission of light and atoms emphasizes 
the symmetry between atom lasers and opti- 
cal lasers. 
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The U.S. Carbon Budget: 
Contributions from Land-Use 

Change 
R. A. Houghton," J. L. Hackler, K. T. Lawrence 

The rates at which lands in the United States were cleared for agriculture, 
abandoned, harvested for wood, and burned were reconstructed from historical 
data for the period 1700-1990 and used in a terrestrial carbon model to 
calculate annual changes in the amount of carbon stored in terrestrial eco- 
systems, including wood products. Changes in land use released 27 i 6 peta- 
grams of carbon to  the atmosphere before 1945 and accumulated 2 5 2 
petagrams of carbon after 1945, largely as a result of fire suppression and forest 
growth on abandoned farmlands. During the 1980s, the net flux of carbon 
attributable to land management offset 10 to 30 percent of U.S. fossil fuel 
emissions. 

The rate at which carbon is accumulating in 
terrestrial ecosystems in the United States is 
uncertain. as are the mechanisms responsible 
for the current sink. Estimates based on mea- 
sured changes in wood volumes (forest in- 
ventories) (1-3) range between 0.079 and 
0.280 petagrams of carboil per year (Pg C 
yearp1). An estimate, based on atmospheric 
and oceanic data and models. and including 
southern Canada. calculated a sink of 1.7 i 
0.5 Pg C year-' (4). Neither of these ap- 
proaches identifies the n~echanisms responsi- 
ble for the sink (5). In contrast. although the 
changes in carbon associated with land-use 
change do not define the total net flux of 
carbon between land and atmosphere. they 
represent the portion of the flux that can be 
attributed to direct human activity, and it is 
this portion that is addressed by the United 
Nations Framework Convention on Climate 
Change and by the Kyoto Protocol. In this 
report. we estimate the annual flux of carbon 
in the United States attributable to changes in 
land use. 

Our approach is based 011 two types of 
info~mation: rates of land-use change and 
changes per hectare in carbon that follo\v a 
change in land use. We considered the con- 
version of natural ecosystems to crovlands 
(cultivated) and pastures (not cultivated). the 
abandonment of croplands and pastures. har- 
vest of industrial wood and fuel wood, and 
fire management, that is. the area annually 
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burned by wildfires. Rates of agricultural 
clearing and abandonme~lt and rates of wood 
harvest were obtained directly from the U.S. 
Department of Agriculture (USDA) for the 
period since 1945 (6) and largely from the 
U.S. Bureau of Census (7) for the period 
between 1700 and 1945. Areas burned each 
year were obtained from wildfire statistics of 
the U.S. Forest Service (8 )  for the period after 
1930 and from pre-European burning rates 
(9) modified by settlement and logging prac- 
tices for the years 1700-1930 (10). A more 
detailed description of the data, sources. and 
assumptions can be found elsewhere (I I .  12). 

We divided the United States into seven 
geographic regions (each region including 
two to five natural ecosystems) for a total of 
13 different ecosystems. not including crop- 
lands and pastures. The areas and carbon 
stocks of ecosystems in 1700 were deter- 
mined from both natural areas (13) and cur- 
rent ecosystems (14). The fractions of vege- 
tation left alive. killed, and burned as a result 
of human activity and fire were defined for 
each type of land use and ecosystem. The 
efficiency of industrial wood harvest in- 
creased through time, so that more wood was 
removed per hectare and less left as slash 
(dead vegetation) (15; 16). Rates of forest 
growth after halvest. fire; and agricultural 
abandonment and rates of decay of organic 
matter for each ecosystem were obtained 
from the ecological literature (17). Changes 
in soil carbon included only the losses that 
resulted from cultivation and the reaccumu- 
lations that followed abandonment of culti- 
vated land. These per hectare rates of carbon 
loss and accumulation after changes in land 
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Fig. 1 (Left). Annual net sources and sinks o f  carbon resulting f rom different types of land use in the United States. Fig. 2 (Right). Annual losses 
and accumulations of carbon in  different terrestrial pools as a result of land management in the United States. 

use were used in a bookkeeping model (18) to 
calculate annual changes in carbon for each 
type of ecosystem, land use; and region. The 
areas of forest burned each year, together 
with the total area of forest in each region and 
the rate of forest growth. constrained the 
average biomass that could be burned per 
hectare in a region's forests (19). 

According to our analysis. changes in land 
use released about 25 Pg C to the atmosphere 
over the period 1700-1990, largely from the 
conversion of forests to agricultural lands and 
from culti~~ation of prairie soils (Fig. 1). The 
net release. overall. included a net uptake of 
2.4 Pg C after 1945 as both the area and 
biomass of forests increased in response to 
fire suppression. reduced harvest of fuel 
wood. and the abandonment of farms. It also 
included an uptake in eastern forests. largely 
offset by releases of carbon from western 
regions where rates of industrial wood har- 
vest increased. 

The net flux resulted from accumulations 
of carbon in regrowing vegetation and, to a 
lesser extent. soils and from releases of car- 
bon from burning and decay (Fig. 2). Before 
European settlement, fires accounted for the 
largest sources (immediate bulning and de- 
layed decay) and sinks of carbon, although 
the net flux from fire was nearly zero as long 
as rates of burning were about constant. As 
wood harvest and agricultural clearing in- 
creased in the 18th century, emissions from 
fire, soil, and wood products increased, but 
annual accumulations also increased as the 
areas of forests recovering from fire and har- 
vesting increased. Replacement of wood fu- 
els with fossil fuels midway through the 19th 
century began to reduce the emissions from 
file1 wood hawesting, and fire suppression 
after 1930 fi~sther reduced the areas burned. 
Despite the recoveiy of forests in the east, 
increasing rates of industrial wood hawests in 
the west and south increased the generation 

of slash and wood products and hence emis- was included in the analysis. The errors are 
sions of carbon. The largest a~inual accumu- estimated to be less than 5 0 . 1  Pg C y e a r '  in 
lations of carbon occu~i-ed in the 1950s and recent decades (20). The analysis that shows 
1960s. By the 1970s, as a result of aging a large sink for carbon beginning in 1920 is 
(slower growing) forests and a resurgence of based on generous assumptions about woody 
fuel wood use, the net flux from land-use encroachment (21) and early fire exclusion 
change was close to zero. (22). Although detailed site-specific data 

The errors resulting from uncertainties in document these processes, the aerial extent 
rates of land-use change. from aggregated and the historical pattern of the changes are 
estimates of biomass. growth. and decay, and unknown. The curve represents an upper lim- 
from simplifying assumptions in the structure it for the sink strength of U.S. ecosystems. 
of the model may be estimated by comparing Most other estimates of flux available for 
the results of successi~~e analyses (Fig. 3). For cornparison pertain to the 1980s and 1990s. 
the three analyses in which changes in land Our analysis for the 1980s shows an average 
use are reasonably well documented. esti- annual accumulation of 0.037 Pg C (Fig. 4). 
mates of the long-term (1700-1990) carboil This net uptake results from the uptake of 
flux range between 24 and 30 Pg C. For carbon by growing vegetation (0.280 Pg C 
shorter intenrals; the errors are larger. The year-') aild emissions from the decay of 
difference between our estimate that includes wood products (0.104 Pg C y e a r ' )  and slash 
fire and an earlier estimate for North America (0.091 Pg C yearp1). some of which had 
that did not include fire (18) is as large as 0.2 accumulated before 1980. The uptake of 
Pg C year-' before 1900. A comparison of 0.280 Pg C y e a r '  occurred on 200 X 10' ha 
our estimates with and without fire shows of recovering forest and \voodlands (about 
that including fire and fire suppression 65% of the U.S. forest areas). The average 
changed estimates of flux by as much as 0.05 rate of growth (1.4 Mg C ha-' y e a r ' )  was 
Pg C yearP1. Surprisingly; fire reduced the low; indicating that many of the forests and 
estimated emissions during the 1800s. The \voodlands were aging and their rates of 
reduction occurred because the bioiiiass of growth were declining. For comparison. net 
forests cleared for agriculture was less if fire annual uptake in a 55- to 75-year-old New 

Table 1. Average annual changes in the amount of carbon held in forests and wood products during the 
1980s (petagrams of carbon per year). Positive values indicate an accumulation on land. 

Method 

Forest inventory Forest inventory Land-use change 
(2)  (3) (this study) 

Trees and understory 
vegetation 

Wood products (37) 
Woody debris and 

forest floor 
Soils (38) 
Net accumulation 
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England forest varied bet~veen 1.4 and 2.8 Table 2. Average annual emissions (+) and accumulations ( - )  of carbon (petagrams of carbon per year) 

hlg C hap '  year-' (23). during the 1980s from forestry and changes in land use. Changes in soil carbon are included in cultivation 

7he rate of carbon accLmlulatioll amibuted and abandonment of croplands. Wood products are included in the emissions from harvests. 

to land-use change in our study is somewhat 
less than that determined from direct measure- Emissions from Accumulations in 

burning and decay recovering ecosystems 
Net flux 

inent of wood volumes in forests (forest inveil- 
toiies) (24) (Table 1). Despite the relatively Croplands 0.092 
high vaiiability of estimated changes for soil Pastures 0.025 
carbon and n-ood products, the absolute differ- Wildfires 0.081 
ences between analyses based on forest inven- Industrial harvests 0.094 

Fuel wood harvests 
tories are <0.2 Pg C yearp'. about the error Subtotal 

0.022 
0.314 

estimated for our analysis. 
Woody encroachment 

The approaches based 011 land-use change 
Continued "thickening" 

and on forest i~lventories are largely indepen- of western pine woodlands 
dent. and differences in their results may from early fire suppression 
suggest the impoiTance of inanageinent in R~~~~~ gains in soil 
detellnining the acculnulation of carbon in carbon from changing 
forests (25). Carbon acculnulations in our agricultural practices 
analysis are calculated by applying gro~vth Total 
rates to forest areas previously harvested. 
Carbon accuinulations obtained froln forest 
in\.entories, 011 the other hand. are based 011 

measured rates of growth, which include both 
recovery from earlier harvests and other fac- 
tors. If CO, feitilization, climatic change. or 
N deposition were responsible for an en- 
hanced rate of growth. for example. one 
would expect analyses based on forest inven- 
tories to show higher rates of growth (and a 
greater rate of carbon accumulation) than the 
analysis based on land-use change (in which 
rates of growth were held constant over time) 
(26). This difference in accumulation rates is 

changes are ilnportant in explaining the up- 
take of carbon observed in U.S. forests during 
the 1980s. 

The estimates of uptake of carbon from 
direct ineasure~nents of forest gron-th and 
from changes in land use are both consider- 
ably lon-er than the annual sink of 1.7 i- 0.5 
Pg C yearp'  inferred from atmospheric data 
and lnodels (4 ) .  That estinlate includes Ca- 
nadian lands south of 51°K. so the sink for 
the United States alone is presu~nably less. 
Some of the difference may also be explained 

observed. The growth attributable to recovery by the time periods included in the analyses. 
from previous harvests accounts for only 20 Our estimate and those based on forest inven- 
to 30% of the growth measured (Table 1). tories were for the 1980s. The analysis based 
The other 70 to 80% may be attributable to on atmospheric data and ~nodels was based 
other factors. Remarkably, the uptake of car- on a shorter intenal, 1988-1992, that includ- 
bon calculated recently nith a process model ed the eruption of hlt. Pinatubo and anoma- 
including variations in temperature. precipi- lously l o ~ v  growth rates of atmospheric CO,. 
tation, and increased CO, accounts for the Thus. the large sink may have been transient. 
rest of the difference (0.078 Pg C yearp')  Other estimates of a terrestrial carbon sink in 
(27).  The agreement is forhlitous given the nol-then~ mid-latitudes, based on analyses of 
errors associated nith the estimates. but it atmospheric gradients in C 0 2 ,  "CO,, and 
suggests that both changes in land use and the O?, vary between 2 and 3.5 Pg C yearp'  (28) 
responses of ecosystems to environmental and suggest a U.S. sink of 0.3 to 0.5 Pg C 

Fig. 3. Annual net flux 
of carbon in the Unit- 
ed States as a result of 
changes in land use. 

tppp i/ - Thls study 1 
T h ~ s  study, flre excluded 

-0 4 T I  s t y  I agr~cultural so11 management, 1 woody encroachment & early flre exclusion 

-0.6 1 I 
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vearp ' if the sink is assumed to be distributed 
evenly over n o ~ t h e r ~ ~  lands (179). 

The accuinulations of carboil estimated 
from forest ~nventor~es and land-use change 
lnav be low. The analvses do not consider all 
lands. Forest inventories, in addressing only 
forests. ignore 70% of the land surface. and 
natural ecosystems not directly hai~ested. 
cleared, or bullled were ignored in our anal- 
ysis. Could such ecosystems be accumulating 
substantial carbon? It seems unlikely. The 
total area of these un~nanaged lands was only 
220 X 10' ha (24% of the land area of the 
United States) in our analysis. too small to 
account for nluch of the difference between 
0.2 Pg C yearp' (from land-use change or 
forest inventories) and - 1 Pg C yearp ' [from 
(4)]. The sink would have to average 3.6 hlg 
C hap '  yearp' or 85%0 of the average net 

,0.260 Releases 

0.297, Uptake 

Net uptake 

10.015 

Fig. 4. The amount of carbon in terrestrial 
carbon pools of the United States in 1990 
(petagrams of carbon), changes in these pools 
(petagrams of carbon per year), and exchanges 
between these pools and the atmosphere dur- 
ing the 1980s (petagrams of carbon per year). 

Soil 
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primary production of terrestrial ecosystems 
in the contiguous United States (27). Further- 
more, forest inventories include the accumu- 
lation of carbon in unmanaged as n-ell as 
managed forests, thus reducing fi~rther the 
area not considered in either analysis. 

Perhaps forest soils, which are not measured 
in forest inventories, are accumulating carbon. 
We have already noted the large uncertainty in 
estimates of change in soil carbon (Table 1). In 
our analysis, n-e included the accumulation of 
carbon in soils recoveling from abandoned ag- 
riculture but not the possible loss (and subse- 
quent recovery) of carbon in forest soils affect- 
ed by logging. Although some studies have 
reported such a loss, the data are not consistent 

imagine that an additional sink three to ten 
times larger (4) has been overlooked. A pos- 
sible increase in the carbon buried in sedi- 
ments as a result of human-induced erosion 
(35) might increase the terrestrial carbon sink 
further. but the magnitude of carbon burial 
through erosion is unknown. In contrast to 
these terrestrial carbon sinks attributable to 
management of the landscape. the annual re- 
lease from fossil fuels in the United States 
averaged 1.230 Pg C year-' during the 1980s 
and was 1.447 Pg C in 1996 (36). Manage- 
ment of terrestrial ecosystems appears to 
have offset only 10 to 30% of the carbon 
released from fossil fiiels. 

ha-' yearr1 depending on the type of forest and its 
age [C. L. Ajtay, P. Ketner, P. Duvigneaud, in The 
Global Carbon Cycle, B. Bolin, E. T. Degens, 8. Kempe, 
P. Ketner, Eds. (Wiley, New York, 1979), pp. 129- 
182; D. E. Keichle, Ed., Dynamic Properties of Forest 
Ecosystems (Cambridge Univ. Press, New York, 1981); 
j. S. Olson, j. A. Watts, L, J. Allison, TR004 (U.S. 
Department of Energy, Washington, DC, 1983)). 

18. R. A. Houghton and J. L. Hackler, ORNL/CDiAC-79, 
NDP-050 (Oak Ridge National Laboratory, Oak Ridge, 
TN, 1995). 

19. The areas of forest burned each year were too large 
t o  allow recovery of biomass if the fires were as- 
sumed t o  be stand-replacing (high mortality) fires. 
We used the combination of burned areas, tota l  areas 
of forest, and regrowth rates t o  define a burning 
cycle in which the same (young) forests were burned 
repeatedly and older, high-biomass forests were 
burned only when rates of burning increased. The 
cycle is consistent wi th the observation that recently 
burned forests are more likelv t o  burn than mature 

(30). Furtheirnore, a recent analysis of soils in a Notes and References forests [C. C. Whitney, ~rom'Coasta1 Wilderness to 
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The evidence is more compelling that car- 
bon is accumulating in agricultural soils as a 
result of changes in management, but our book- 
keeping model did not consider these changes. 
We calculated that the net loss of soil organic 
carbon from cultivation and abandonment ac- 
counted for about 23% of the long-tell net flux 
attributable to land-use change. Each hectare 
cultivated lost about 25% of its initial carbon to 
a depth of 1 m, and during the 1980s. soils were 
a net sink of 0.002 Pg C yearp' as a result of 
agricultural abandonment (Fig. 4). However, 
increased crop productivity since 1960 and, 
more recently. conservation tillage and the 
Consei~ation Resewe Program are likely to 
have increased further the storage of carbon in 
agricultural soils. Using the estimates of Doni- 
gian ef al. (32), n-e calculated an additional rate 
of accumulation of 0.107 Pg C yearp' for the 
1980s. Adding conservation tillage (33) and the 
Consei~ation Resei7-e Program (34) increased 
the estimated sink in managed soils to 0.138 Pg 
C yearp' (Table 2). 

We also estimated the amount of carbon 
that might have accumulated as a result of 
woody encroachment in nonforest ecosys- 
tems (21) and the "thickening" of western 
pine forests that began with fire suppression 
initiated before systematic collection of data 
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gether (changes in agriculhiral soils, woody 
encroachment, and early fire suppression) 
give an upper estimate for carbon sequestra- 
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C yearp', and thus it is difficult for us to 
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An Adhesin of the Yeast 
Pathogen Candida glabrata 

Mediating Adherence to Human 
Epithelial Cells 

Brendan P. Cormack,'*t Nafisa Ghori,' Stanley F a l k o ~ ' , ~  

Candida glabrata is an important fungal pathogen of humans that is responsible 
for about 15 percent of mucosal and systemic candidiasis. Candida glabrata 
adhered avidly to human epithelial cells in culture. By means of a genetic 
approach and a strategy allowing parallel screening of mutants, it was possible 
to clone a lectin from a Candida species. Deletion of this adhesin reduced 
adherence of C. glabrata to human epithelial cells by 95 percent. The adhesin, 
encoded by the EPA7 gene, is likely a glucan-cross-linked cell-wall protein and 
binds to  host-cell carbohydrate, specifically recognizing asialo-lactosyl-con- 
taining carbohydrates. 

Candidu species are responsible for inore 
than 8% of all hospital-acquired infections 
(I);  the two most frequently encountered spe- 
cies are C. glabrrrta and C, irlbicnns (2). 
Candida irlbicaizs is asexual and diploid, 
which complicates genetic analysis in this 
organism because both copies of a gene must 
be knocked out to uncover a recessive phe- 
notype. Analysis of virulence in C, ulbicans 
has, therefore, been limited largely to reverse 
genetic approaches in which both copies of 
individual cloned genes are deleted and the 
resulting phenotype is assessed. Cnndida glrr- 
bmta, although asexual, is haploid (3), which 
facilitates genetic analysis. In C, glubi.ata, it 
is possible to generate random mutants and 
screen for phenotypes of interest (4).  Here, 
we demonstrate that this fonvard genetic ap- 
proach can be used to analyze the host-patho- 
gen interaction in C, glnbratn and use this 
approach to identify an adhesin mediating 
adherence of C. glnbi.utu to host epithelial 
cells. 

The adherence of Candido to host cells 
has been the subject of intense investigation. 
and in the case of C. albicans, the yeast 
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expresses a number of adhesins capable of 
interacting with a variety of ligands, includ- 
ing proteins [reviewed in (j)]  and carbohy- 
drates (5-8). Recently, it has also been shown 
that Hwplp, a hypha-specific protein, is a 
substrate for mammalian transglutaminases 
and mediates covalent attachment of C. nlbi- 
cirns to human buccal epithelial cells (9). 

We found that C, glnbi.ata adheres strong- 
ly to human epithelial cells in culture. In our 
assay (IO), with a multiplicity of infection 
(MOI) of 1 : 1, between 10 and 20% of added 
yeast adheres to a inonolayer of the human 
laryngeal carcinoma cell line HEp2 compared 
with 0.1% of added yeast for Sacchuromyces 
cerevisiae (11). Scanning electron micro- 
graphs of C. glnbrata bound to the surface of 
the monolayer show a marked and intimate 
interaction between the epithelial cell filopo- 
dia and the yeast cell (Fig. 1) (12). In trans- 
mission electron micrographs (13), a similar 
tight association is seen between the surface 
of the yeast cell and the surface of the epi- 
thelial cell, suggesting that the host ligand is 
broadly distributed on these tissue culture 
cells. This interaction is dependent on Ca2' 
because adherent yeast can be removed with 
EGTA or with EGTA titrated with Mg2' but 
not with EGTA titrated with Ca2' (13). 

To identify the yeast gene mediating the 
interaction of C. glabrata with epithelial 
cells, we undertook a mutant screen. We 
implemented a number of genetic tools to 
facilitate this analysis. First, we used a ura3 
deletion strain congenic with a virulent clin- 
ical isolate (4). Second, we used a variation 
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