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values of the charge densities o and a,,,,, 
although we must have 1 a I > a,,J2 in 
order to obtain the instability. Increasing the 
salt concentration beyond 17' = 20 mM. how- 
ever. eliminates charge reversal by increasing 
T, a prediction in qualitative agreement with 
the experiinents of (3). If i? lies between 20 
mM and -150 inM, we still find an instabil- 
ity, this time to partitioning into strong- and 
weak-adhesion zones (2). 

In retrospect, our mechanism is reminis- 
cent of the chemiosmotic principle in bioen- 
ergetics (14): In this context it is well known 
that electrostatic effects can be transmitted 
oa-er many screening lengths with the help of 
a semipermeable membrane. Besides enter- 
ing into an explanation of the experiments in 
(2, 3), our mechanism predicts that flaccid 
charged a-esicles can adhere to oppositely 
charged substrates while remaining flaccid. 
Our analysis also makes testable predictions 
about the dependence of the equilibrium area 
fraction y, on the system parameters. notably 
the bilayer conlposition and salt concentra- 
tion. Perhaps most strikingly. the charge-re- 
versed zone we describe should prove attrac- 
tive to same-charge objects-a phenomenon 
not yet seen. 
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Climate and Satellite Indicators 
to  Forecast Ri f t  Valley Fever 

Epidemics in Kenya 
Kenneth J. Linthicum,'" Assaf Anyamba,'" Compton J. Tucker,' 

Patrick W. Kelley,' Monica F. ~ y e r s , '  Clarence J. peters3 

All known Rift Valley fever virus outbreaks in East Africa from 1950 to May 
1998, and probably earlier, followed periods of abnormally high rainfall. Anal- 
ysis of this record and Pacific and Indian Ocean sea surface temperature 
anomalies, coupled with satellite normalized difference vegetation index data, 
shows that prediction of Rift Valley fever outbreaks may be made up to 5 
months in advance of outbreaks in East Africa. Concurrent near-real-time 
monitoring with satellite normalized difference vegetation data may identify 
actual affected areas. 

Rift Valley fever (RVF), a viral disease first 
described in Kenya in 1931 (1). affects do- 
mestic animals and humans throughout sub- 
Saharan Africa and results in widespread 
livestock losses and frequent human mortal- 
ity. Its occurrence is known to follow periods 
of widespread and h e a ~ y  rainfall associated 
with the development of a strong intertropical 
convergence zone, the region in the equato- 
rial tropics where air cui~ents from the north 
and south converge and produce precipitation 
(2). Such heavy rainfall floods mosquito 
breeding habitats in East Africa, known as 
"dambos," which contain transovarially in- 
fected Aedes nlosquito eggs and subsequently 
serve as good habitats for other C~rle .~ species 
mnosquito vectors (3). The most recent RVF 

epizootic!epidemic was in East Africa in late 
1997 and early 1998. 

Vegetation responds to increased rainfall 
and can be easily measured by satellite. Nor- 
malized difference vegetation index (NDVI) 
data from the advanced very high resolution 
radiometer (AVHRR) on National Oceanic 
and Atmospheric Administration (NOAA) 
satellites have been used to detect conditions 
suitable for the earliest stages in an RVF 
epizootic (4). Refinement in determining the 
spatial distribution of RVF viral activity, 
through identification of ideal mosquito hab- 
itat. has been possible with higher resolution 
Landsat, Systeme pour I'Observation de la 
Terre (SPOT), and airborne synthetic aper- 
ture radar data (5); however, predictive indi- 
cators are needed to forecast RVF outbreaks. 
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Fig. 1. A t ime series p lot  4 
of SO1 anomalies be- 
tween January 1950 and 
May 1998. Periods of RVF 2 
activi ty in  Kenya are de- '% 2 
picted. Month ly  SO1 val- 5 
ues are shown as stan- 5 
dardized deviations based 
on  the 1951-80 mean. + 
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tation in some regions of East Africa and 
result in droughts in southern Africa (7, 8). 
The Southern Oscillation Index (SOI) is the 
most commoilly used index for the ENSO 
phenomena (7, 9) and extends back to the late 
19th century. This index compares atmo- 
spheric pressure in Tahiti ~vith that of Dar- 
win, Australia, and is expressed as a stan- 
dardized deviation from the norm. Strong 
negative ailonlalies are associated ~vith an El 
Niiio event (6, 10). Anomalous climatic con- 
ditions caused by ENSO are now recogilized 
to be linked.n.it11 outbreaks of various 11u1nan 
and livestock diseases in various couiltries 
(7). Above normal East African rainfall is 
associated with negative SO1 anomalies re- 
sulting in nlore green vegetation, ~vhich then 
is detected by the satellite-derived NDVI (11, 
12). 

We coinpared RVF virus activity with 
cossesponding monthly SO1 from 1950 to 
1998, sea surface tenlperatures (SSTs) from 
an equatorial region in the Pacific Ocean 
(named N J O  3.4, 5"N to jOS, 170" to 120°W), 
equatorial western Indian Ocean SSTs (lOON 
to 10°S, 40" to 64OE), and Kenyan NDVI 
AVHRR data fioin 1982 to 1998 (13). During 
this 48-year period, there were eight periods 
with RVF viral activity and 13 periods when 
there were strong negative anomalies in the 
SO1 (<- 1.5) (Fig. 1). 

Rainfall exceptio~lally above ilorlnal was 
coincident with major regional RVF epizoot- 
ics in 1951-53, 1961-63, 1968-69, 1977- 
79, and 1997-98 (2). In late 1957 and 1982 
and in the middle of 1989, heaky rainfall in 
Kenya preceded RVF virus activity that was 
detected by identification of clinical cases, 
isolation of the virus in mosquitoes, or detec- 
tion of high levels of immunoglobulin (type 
IgM) antibody specific for RVF virus (indi- 
cating recent RVF infection) in domestic an- 
imals and humans (2, 3, 14). 

RVF activity and above noimal rainfall 
always followed a period of strong negative 

deviation of the SOI; holvever, neither the 
strength nor the length of the SO1 anonlaly 
correlated with the intensity of RVF activity. 
The regional RVF activity detected in 1982 
followed an intense SO1 anomaly <-4, 
whereas the inajor outbreaks starting in 195 1, 
1961, and 1968 occui~ed after SO1 anomalies 
<-2. Strong negative SO1 ailonlalies also 
occurred in 1964, 1969, 1972-73, 1981. and 
1991-95; holvever, there was neither above 
noimal rainfall nor detectable RVF activity in 
Kenya for these periods. Although excessive- 
ly heavy rainfall and RVF activity in Kenya 
were dependent on a strong SO1 anomaly. 
the overall ability to predict an RVF out- 
break with SO1 anomalies alone was only 
67%, indicating that other factors must be 
involved. 

A stroilg relation between equatorial Pa- 
cific SST and elevated East African precipi- 
tation has been reported (8, 12), as has a 
strong relation between equatorial Pacific 
SST and maize yield in Zimbabwe (1.5). In 
addition, Indian Ocean SST has been report- 
ed to be highly related to rainfall in East 
Afiica (1 6). 

Concurrent Pacific and Indian Ocean 
SST anoillalies >3"C and 0.5"C, respec- 
tively, were correlated with widespread 
rains in East Africa (8 ,  12, 16)  and RVF 
outbreaks. RVF activity was followed by 2 
(1982-83) and 5 (1997-98) months of 
strong concurrent equatorial Pacific and In- 
dian Ocean SST anomalies (Fig. 2).  When 
both equatorial Pacific and Indian Ocean 
SSTs were elevated, the extent of the Indi- 
an Ocean te~nperature anomaly was indic- 
ative of the intensity and the duration of 
RVF activity. However, when the strength 
of the concurrent Pacific and Indian Ocean 
SST anomalies was reduced. but still ~ o s i -  
tive, the pattern of increased rainfall can be 
irregular and a region-wide effect cannot 
usually be found. 

To overcome the problem of determining 

d * .- RVF Activ~ty - 
m 3 I 

1,' 
{I 

Year 

Fig. 2. Time series plots o f  Indian Ocean SST 
anomalies f rom January 1982 t o  May 1998 
wi th  SO1 anomalies (A), equatorial Pacific 
Ocean (Nii io 3.4 area) SST anomalies (B), and 
Nairobi NDVI anomalies (C). Indian and equa- 
torial Pacific Ocean SST anomalies are depicted 
as degree Celsius deviations f rom their respec- 
t ive mean value (mean value for period shown 
= 0°C). SO1 and Nairobi NDVI anomalies are 
depicted as deviations f rom their respective 
mean values normalized by the standard devi- 
at ion (mean value for period shown = 0). 

~vhere, and to ~vhat extent, RVF outbreaks 
were possible in years lacking concussently 
high Pacific and Indian Ocean SST anoma- 
lies, we used NDVI nleasurenlents derived 
fi-on1 NOAA polar-orbiting satellite data to 
identify areas of abnormally high green veg- 
etation development resulting from abnor- 
inally high rainfall (17). This is possible 
through the use of intercalibrated satellite 
data running from 198 1 through the present 
(18). 

We suggest that NOAA AVHRR NDVI 
time series data are required to identify more 
localized areas ~vhere anomalous rainfall has 

398 16 JULY 1999 VOL 285 SCIENCE www.sciencem 



R E P O R T S  

Fig. 3. Monthly AVHRR 
NDVI composite imag- 
es of continental Afri- 
ca during the 1997-98 
ENS0 warm event. 
Data depicted are the 
degree of deviation 
from the long-term 
mean calculated for 
the period January 
1982 to  May 1998 in 
NDVI units (73). A 
value of zero means 
that cumnt values are 
identical to the monthly 
1982-95 mean. 

SEPTEMBER 1997 OCTOBER 1997 NOVEMBER 1997 DECEMBER 1997 

occurred and hence more localized RVF ac- 
tivity is present. It is only by doing this 
discrimination that lower amounts of RVF 
can be confirmed or, conversely, that a lower 
threshold of rainfall anomalies coupled with 
extent of affected area can be determined as 
this relates to RVF activity outbreaks. The 
satellite normalized difference vegetation 
data are available the same day as acquisition, 
provide confirmation of predicted rainfall 
events with SSTs, and provide direct identi- 
fication of localized rainfall anomalies. 

Elevated NDVI anomalies, as indicated 
by dark green shades in Fig. 3, were ob- 
served for East Africa starting in October 
1997 (the start of the normal short rainy 
period) and extending to April 1998 
(through the normal dry season of January 
and February) (Fig. 3). NDVI anomalies 
were significantly correlated with RVF ac- 
tivity 1 to 2 months before detection of 
viral activity (P  < 0.5) (19). 

Strong NDVI positive anomalies were ob- 
served in June 1989 with the presence of 
RVF activity and in January and February 
1993 in the absence of detectable RVF activ- 
ity (Fig. 2C). We suggest that the elevated 
NDVI values at these times reflected local 
rain conditions because they were not ob- 
served in NDVI anomaly data for the same 

FEBRUARY 1998 

- 
MARCH 1998 

- 
APRIL 1998 

NDVI ANOMALIES 

period at other locations in Kenya. 
To determine the best predictors of RVF 

activity, we evaluated SOI, equatorial Pacific 
SSTs, Indian Ocean SSTs, and NDVI anom- 
alies in various combinations in ARIMA 
models (20). The best fit to the RVF outbreak 
data was achieved when equatorial Pacific 
and Indian Ocean SST and NDVI anomaly 
data were used together (ARIMA, SBC = 
- 106, analysis of variance df = 192, P < 
0.01). These data could have been used to 
successfully predict each of the three RVF 
outbreaks that occurred between 1982 and 
1998 without predicting any false RVF 
events for an overall prediction of risk of 
100%. Predictive models that use either SO1 
and Indian Ocean or NDVI and Indian Ocean 
anomaly data would have predicted all three 
RVF events but falsely predicted either one 
or two disease events, respectively. 

The ability to forecast regional RVF 
virus activity in Kenya, based on Pacific 
and Indian Ocean SST anomalies and 
NDVI, 2 to 5 months before outbreaks 
could permit vaccination of domestic ani- 
mals and pretreatment of mosquito habitats 
adjacent to domestic animal herds and hu- 
man habitations with highly effective sus- 
tained release insecticides that would be 
released upon flooding (21). 
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Unraveling the Electronic Structure 
of Individual Photosynthetic 
Pigment-Protein Complexes 

Antoine M. van Oijen,1* Martijn Ketelaars,2 

Jurgen Kohler/f Thijs J. Aartsma,2 Jan Schmidt1 

Low-temperature single-molecule spectroscopic techniques were applied to a 
light-harvesting pigment-protein complex (LH2) from purple photosynthetic 
bacteria. The properties of the electronically excited states of the two circular 
assemblies (B800 and B850) of bacteriochlorophyll a (BChl a) pigment mole­
cules in the individual complexes were revealed, without ensemble averaging. 
The results show that the excited states of the B800 ring of pigments are mainly 
localized on individual BChl a molecules. In contrast, the absorption of a photon 
by the B850 ring can be consistently described in terms of an excitation that 
is completely delocalized over the ring. This property may contribute to the high 
efficiency of energy transfer in these photosynthetic complexes. 

The primary process in bacterial photosynthesis 
is the absorption of a photon by the light-
harvesting antenna system, followed by the rap­
id and efficient transfer to the reaction center 
where the charge separation takes place. Typi­
cally, photosynthetic purple bacteria contain 
two types of antenna complexes, light-harvest­
ing complexes 1 and 2 (LH1 and LH2, respec­
tively), both of which are integral membrane 
proteins. The reaction center is presumed to be 
surrounded by the LH1 complex, whereas the 
LH2 complexes are arranged around the perim­
eter of the LH1 ring in a two-dimensional struc­
ture (/). The structure of the LH2 complex of 
the purple bacterium Rhodopseudomonas aci-
dophila is known in great detail from x-ray 
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crystallography (2), which has shown that the 
LH2 complex comprises 27 BChl a and (pre­
sumably) 18 carotenoid molecules nonco-
valently bound to the protein matrix. The BChl 
a molecules are organized in two concentric 
rings (Fig. 1). One ring, referred to as B800, 
features a group of nine well-separated BChl a 
molecules with an absorption band at —800 
nm. The other ring, referred to as B850, consists 
of 18 closely interacting BChl a molecules with 
an absorption band at ~860 nm. The entire 
LH2 complex is cylindrically symmetric with a 

ninefold symmetry axis. Upon excitation, ener­
gy transfer occurs from B800 to B850 mole­
cules on a picosecond time scale (3-5), whereas 
among the B850 molecules, it is an order of 
magnitude faster (6-8). The transfer of energy 
from LH2 to LH1 and subsequently to the 
reaction center occurs in vivo on a time scale of 
5 to 25 ps (9), very fast in comparison to the 
decay of B850 in isolated LH2, which corre­
sponds to a lifetime of 1.1 ns. 

Despite the fact that the LH2 complex has 
been intensively investigated in recent years 
with a wide variety of spectroscopic tools, in­
cluding the observation of the fluorescence dy­
namics of single LH2 complexes (10), no clear 
picture of the electronic structure of its excited 
states exists. Here, we present the results of a 
study of isolated single LH2 complexes by 
single-molecule fluorescence-excitation spec­
troscopy, a method successfully applied in re­
cent years to the detection of single guest mol­
ecules in crystalline and amorphous matrices 
(11). This technique allows the observation of 
optical spectra of individual complexes devoid 
of the ensemble averaging over static intercom-
plex disorder, thus directly revealing the salient 
properties of the electronic structure of the ex­
cited states. 

The LH2 complexes of R. acidophila were 
prepared as described elsewhere (3). Hydro-
lyzed polyvinyl alcohol) (PVA) with a weight-
average molecular weight of 125,000 (obtained 
from British Drug House) was purified over a 

Fig. 1. Geometrical ar­
rangement of the 27 
BChl a molecules of 
the LH2 complex of R. 
acidophila obtained 
by x-ray crystallogra­
phy. The B800 BChl a 
molecules are depict­
ed in blue, and the 
B850 pigments are 
red. The phytol chains 
of the BChl a mole­
cules are omitted for 
clarity. The data have 
been taken from the Protein Data Bank (identification code: 1kzu). 
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