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to that of CD40 and CD40L in T cell-depen- 
dent antigen activation (26, 27). As such, 
BLyS, its receptor, or related antagonists may 
find medical utility in the treatment of B cell 
disorders associated with autoimmunity, neo- 
plasia, or immunodeficiency syndromes. 
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hRAD30 Mutations in the 
Variant Form of Xeroderma 

Pigmentosum 
Robert E. Johnson, Christine M. Kondratick, Satya Prakash, 

Louise Prakash* 

Xeroderma pigmentosum (XP) is an autosomal recessive disease characterized 
by a high incidence of skin cancers. Yeast RAD30 encodes a DNA polymerase 
involved in  the error-free bypass of ultraviolet (UV) damage. Here it is shown 
that XP variant (XP-V) cell lines harbor nonsense or frameshift mutations in 
hRAD30, the human counterpart of yeast RAD30. Of  the eight mutations 
identified, seven would result in a severely truncated hRad30 protein. These 
results indicate that defects in hRAD30 cause XP-V, and they suggest that 
error-free replication of UV lesions by hRad30 plays an important role in  
minimizing the incidence of sunlight-induced skin cancers. 

Xeroderma pigmentosum (XP) patients are 
hypersensitive to sunlight, and they suffer 
from a high incidence of skin cancers. Cells 
from seven different XP complementation 
groups (A to G) are defective in nucleotide 
excision repair ( I ) ,  whereas cells from the 
variant form of XP (XP-V) excise UV pho- 
toproducts at a normal rate (2). XP-V cells, 
however, are much slower than normal cells 
in replicating DNA containing UV photo- 
products (3), and XP-V cell-free extracts are 
deficient in bypass replication of a cis-syn 
thymine-thymine (T-T) dimer (4). XP-V cells 
are hypermutable with UV light and exhibit 
an unusual mutational spectrum (5). The 
RAD30 gene of Saccharomyces cerevisiae 
functions in error-free bypass of UV lesions 

(6, 7). RAD30 encodes a DNA polymerase, 
Polq, which can efficiently replicate past a 
cis-syn T-T dimer in template DNA, and 
Rad30 inserts two adenines across from the 
dimer (8). Here, we determine if the human 
homolog of yeast RAD30 is responsible for 
XP-v. 

A human cDNA clone, H96386 [345 base 
pairs (bp)], that encodes a peptide with homol- 
ogy to the NH,-terminus of yeast Rad30 protein 
was used to screen a spleen cDNA library (9),  
and a single clone that contains a 3-kb cDNA 
insert was isolated. Sequence analysis (10) of 
this cDNA (11) (GenBank accession number 
AF 158 185) indicated that the protein encoded 
by the human gene displays significant homol- 
ogy to the S, cerevisiae Rad30 protein (Fig. 
1 A). We have named the human gene hRAD30. 
Excluding the intervening region from amino 
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The yeast REV1 gene encodes a deoxy- 
cytidyl transferase (12) that is homologous 
with Rad3O (6, 13) (Fig. 1B). However, yeast 
Revl shares only 13% identical and 32% 
conserved residues with hRad30, and many 
of the conserved motifs in the COOH-termi- 
nal portion of yeast and human Rad3O are 
absent from Revl (Fig. 1B). For example, the 
Rad30 motif EH(M/A)DYH(F/L)AL is ab- 
sent from Revl (Fig. 1B). In addition, the 
NH,- and COOH-terminal sequences of Revl 
are not found in yeast or human Rad30 (Fig. 
1B). Thus, hRad3O is the human counterpart 
of yeast Rad30. 

To determine whether defects in hRAD30 
are responsible for XP-V, we sequenced (I 0) 
hRAD30 cDNA from eight different human 
XP-V cell lines and from five other control 
cell lines (14). RNA isolated from these cell 
lines was used to generate hRAD3O cDNA, 
which was then amplified by polymerase 
chain reaction (PCR) (10). In the five control 
cell lines, which include a normal lympho- 
blast cell line, a HeLa cell line, and three cell 
lines derived from XPA, XPB, and XPC pa- 
tients, we found no sequence changes in 
hRAD30. By contrast, eight distinct muta- 
tions were identified (Table 1) in the eight 
XP-V cell lines. The XPlCH and XP2CH 
cell lines are derived from two XP-V-affect- 
ed sibs who are offspring of a first cousin 
maniage. Both have a C to T transition at 
nucleotide (nt) 376 (Fig. 2A) which creates a 
TAA nonsense codon that would result in a 
truncated protein of 125 amino acids. The 
XP115LO cell line, also derived from an 
individual who is an offspring of a first cous- 
in marriage, carries a C to T transition at nt 
11 17 (Fig. 2B) that creates a TAA stop codon 
at position 372. The XP30RO cell line has a 
deletion of 13 bp (Fig. 2C) that would trun- 
cate hRad30 at position 35. The XPSMA 
cell line has a deletion of 104 bp (Fig. 2D) 
that would truncate hRad30 at position 220. 
In each of these five XP-V cell lines, only 
the respective mutant allele was observed. 
The XP6DU cell line has two different 
mutant alleles of hRAD30. One of these 
would result in the termination of hRad30 
at position 69, and the other would result in 
the deletion of the Leu-75 residue from the 
protein. In cell line XPPHBE, one allele 
has a frameshift mutation that would termi- 
nate hRad30 at position 359. We have been 
unable to identify a mutation within the 
second hRAD30 allele in XPPHBE; howev- 
er, this allele is expressed at about 20% the 
level of the mutant form (15). In cell line 
XPlSF, one hRAD30 allele has a C to T 
transition mutation that generates a TAG 
stop codon, resulting in a truncated protein 
of only 22 amino acids. In this cell line 
also, we have been unable to identify a 
mutation within the second hRAD30 allele, 
but here too the wild-type allele is ex- 

m a d 3 0  TS LSSD SLPKVPVTSSEAKTQI 
yRad30  DPIGNQVqFK- - - - - - - - - - - - - .  

-30 KPSLPFPTSQSTGTEPFFKQKSLLI  
yRad30 ...................... 

M a d 3 0  ATPAEIIDLAHNSQSMHA 
m a d 3 0  ----------------- 

I C ( ~ F L C A [ ( ( B S A S A P S S S ~ [  ( 4 4 0 )  
Y S M T I  N D I I D L Q - K  V ( 5 1 6 )  
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Fig. 1. (A) Alignment of human Rad30 (hRad30) and 5. cerevisiae Rad30 (yRad30) protein 
sequences. Identical and highly conserved residues are highlighted. Numbers in parentheses 
indicate amino acid positions; asterisks indicate stop codons. (B) Schematic representation of 
homology between human Rad30,S. cerevisiae Rad30, and 5. cerevisiae Revl (yRevl). Unshaded 
boxes represent nonhomologous sequences and shaded boxes represent homologous sequences. 
Positions of highly conserved motifs are indicated. Caps have been introduced for optimal 
alignment. Protein Lengths are indicated by numbers on the right. Abbreviations for the amino acid 
residues are as follows: A, Ala; C, Cys; D, Asp; E, Clu; F, Phe; C, Cly; H, His; I, Ile; K, Lys; L, Leu; M, 
Met; N, Asn; P, Pro; Q, Cln; R, Arg; 5, Ser; T, Thr; V, Val; W, Trp; and Y, Tyr. 

pressed at a lower level (-10%) than the 
mutant allele (15). 

In six of the cell lines (XPlCH, XP2CH, 
XP 1 15L0, XP30R0, XPSMA, and XP6DU), 
we observed only the mutant form or forms 
of the hRAD30 allele. Of the six different 
mutations present in these cell lines, five 
would result in premature termination of 
translation. The longest of these truncated 
proteins would contain only 372 amino acids 
and thus would retain only about 50% of the 
protein. Because the human and yeast Rad30 
proteins share regions of homology beyond 
residue 372 of hRad30 (Fig. 1 A), this hRad30 
truncation is likely to result in the loss of 
function. The other four truncated proteins 
would contain only 35 to 220 amino acids of 
hRad30, and it is likely that they inactivate 
hRad30 function. Yeast Rad30 deleted be- 
yond residue 340 has no DNA polymerase 
activity, and this mutation does not comple- 
ment the UV sensitivity of the rad3OA strain 
(16). One mutant allele of hMD30 is deleted 
for the Leu-75 codon. This residue is identi- 

cal in the yeast and human proteins, and it lies 
in a conserved region of the protein; thus, it 
may also affect hRad3O function. Two of the 
cells lines (XPPHBE and XPlSF) have a 
mutation in only one of the two chromo- 
somes, and these mutations also would pro- 
duce severely truncated proteins. However, in 
both these cell lines, the allele with no muta- 
tional alteration is expressed at a reduced 
level. Also, we have not excluded the possi- 
bility that these apparently wild-type alleles 
harbor a mutation in the 5'- or 3'-flanking 
regions that have not been sequenced. 

The fact that seven of the eight mutations 
identified in XP-V cell lines result in severely 
truncated proteins indicates that mutations in 
hR4D30 are responsible for XP-V. Our results 
also suggest that loss of hRad30 function is not 
lethal. XP-V cells are hypermutable with UV 
light, and they are less likely than normal cells 
to incorporate deoxyadenosine 5'-monophos- 
phate opposite photoproducts involving thy- 
mine (5). These observations support the notion 
that hRad30 functions in error-free replication 
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amplified in three overlapping fragments. Fragment 1 
was amplified with oligonucleotides RT5' (5'-GG- 
GAATAAATCTCGCTCGAAACTCACTGGACCGG-3') and 
N4920 (9); this fragment encompasses nt -152 to 
+280 of hRAD30. Fragment 2 was generated with 
oligonucleotides N4921 (9) and N4918 (5'-CTTTTGC- 
CTTGATGAGATACGGCAGAAACAACCAGGG-3'): this 
fragment encompasses nt +I39 to +2048 of hRAD30. 
Fragment 3 encompasses nt + 1738 to +2267 and was 
amplified with oligonucleotides N4919 (5'-GGGGT- 
GTCGAAGCTAGAAGAATCCTCTAAAGCAACTCC-3') 
and RT3' (5' -TTATTT TTTGTATTAAAAATTTCAT- 
AATTCCCTTTCTCAG-3'). Amplified cDNAs from cell 
lines and clone 21749 (9) were sequenced with the 
Theno Sequenase kit (Amersham Phanacia Biotech). 
In addition to the oligonucleotides used for RT-PCR, we 
used the following oligonucleotides as primers to se- 

cell line Repository Ancestry Mutational alteration (type) Effect on hRad30 
number protein 

XPlCH CM03055 Russian-Armenian C-T at +376 (nonsense) Premature termination 
at Val125 

XP2CH CM03053 Russian-Armenian C-T at +376 (nonsense) Premature termination 
at Val125 

XP115LO CM02359A Iranian C+T at + 11 17 (nonsense) Premature termination 
at 

XP30RO CM03617 Lebanese 13-bp deletion from + I04  Frameshift at Ala35* 
to  + I16 (frameshift) 

XPSMA CM03379 German 104-bp deletion from +661 Frameshift at LysZ20t 
to  +764 (frameshift) 

XP6DU CM03618 Scottish -1 C at +207 (frameshift) Frameshift at L y P f  
3-bp deletion from +222 to  Deletion of Leu75 

+224 (inframe deletion) 
XPPHBE CM02449C +I C at +I078 (frameshift) Frameshift at Asn359§ 
XPISF CM06090 Chinese C+T at + 67 (nonsense) Premature termination 

at CluZZ 

*After the frameshift, the alternate reading frame encodes seven unrelated amino acids before terminating. ?After 
the frameshift, the alternate reading frame encodes one proline residue before terminating. $After the frameshift. 
the alternate reading frame encodes 29 unrelated amino acids before terminating. $After the frameshift, the 
alternate reading frame encodes 31 unrelated amino acids before terminating. 

A Normal XPlCH B Normal XP115LO 
,.a +383-= -. - - - - +1112- - c- 

+376 C- - +376 T 

. - 
--.I - - - 

+358--- -. - 
G A T C  G A T C  

Z - 
+1122- - 

G A T C  G A T C  

Normal quence the ~RAD% Gne: 5' Seq (5'-~CTTCTTAG- 
CATCATCTGCCCAC-3'), N5035 (5'-GCCTATC- 
TCGGCAGACTTGTTGCC-3'L N5321 (5'-GAAAT- C Normal 

GAGCATCATAGCGGGTAAGGGC-3'). N5087 (5'- 
CTGGCACCTTTGGCAGAGAACTTGGG-3'), 1565AS 
(5'-CTCAGTTCCTGTACTTTGACTGG-3'). N5036 (5'- 
GGGCCAAATCCATCTCTGCAGG-3'), and 3' Seq (5'- 
GCAGAAATCCTTTTTGCAGCCCC-3'). Samples were 
run on 6 to 8% tris-taurine-EDTA polyactylamide gels 
containing 8 M urea. Gels were fixed in 10% acetic acid, 
10% methanol solution and dried before autoradiogra- 
phy. Each of the mutations in the XP-V cell lines were 
independently amplified and sequenced three or four 
times. 

11. Supplemental information is available on Science On- 
line at www.sciencemag.org/featureldata11041880. 

- - 
G A T C  

G A T C  G A T C  
m 

4 

G A T C  
Fig. 2. Detection of hRAD30 mutations in XP-V cell lines. Numbers indicate nucleotide position in 
relation t o  +1 of the ATC initiation codon. The positions of mutational alterations are indicated. 
(A) The C+T mutation at  n t  +376 in XPlCH cell line. (B) The C+T mutation at n t  + I117  in 
XP11SLO cell line. (C) The 13-bp deletion from n t  + I 0 4  t o  + I 1 6  in XP30RO cell line. (D) The 
104-bp deletion from n t  +661 t o  +764 in XPSMA cell line. The asterisk indicates the missing 92 
n t  of the normal hRAD30 sequence. The orientation of the hRAD30 sequence in  (A) and (D) is 
different from that in (B) and (C). 
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