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diffraction nleasurenlent revealed the farina- 
tion of Li,C, in the Li-doped CNT or graph- 
ite. We have also perfornled ultraviolet pho- 
toelectron spectroscopy (UPS) studies of va- 
lence band structure for both sanlples with 
and without Li. Tt was shown that the Li 
doping resulted in an extra half-filled elec- 
tron-density-of-state containing the Fe~nl i  
edge (11). The H,-dissociative adsorption on 
carbon is a slow activated process (12) with 

5. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, 
D. S. Bethuune, M. J. Heben, Nature, 386, 377 (1997). 

6. A. Chambers, C. Park, R. T. K. Baker, J. Phys. Chem. B 
102, 4253 (1998). 

7. Y. Ye et a/., Appl. Phys. Lett., 74, 2307 (1999). 
8. P. Chen, X. Wu, J. Lin, K. L. Tan, Phys. Rev, Lett. 82, 

254 (1999); P. Chen, H. B. Zhang, G. D. Lin, Q. Hong, 
K. R. Tsai, Carbon 35, 1495 (1997). 

9. X. Wu, P. Chen, J. Lin, K. L. Tan, Int. J. Hydrogen 
Energy, in press. 

10. R. M. Silverstein, C. C. Bassler, T. C. Morrill, Spectro- 

metric Identification of Organic Compounds (Wiley, 
New York, 1991). pp. 103-107. 

11. R. Schlagl, in Progress in Intercalation Research, W. 
Muller-Warmuth and R. Schollorn, Eds. (Kluwer, Dor- 
drecht, Netherlands, 1994), pp. 83-176. 

12. R, I. Masel, Principles of Adsorption and Reaction on 
Solid Surfaces (Wiley, New York, 1996), p. 443. 

13. N. A. Holzwarth, S. Rabii, L. A. Cirifalco, Phys. Rev. B 
18, 5190 (1978). 

12 January 1999: accepted 1 June 1999 

an activation energy corresponding to an 
above-zero-energy crossing between the di-H 
atoms and H, illolecular potential curves. 

Regulation of NMDA Receptors 
Theoretical band-structure calculation (13) 
has indicated that the half-filled Fenni level 

by an Associated 
band created by the LI doping can overlap 
strongly w ~ t h  the unoccupied antlbondnlg H, 
(l.s2)* orbital. which to a large extent reduces 
the energy barrier for H, dissociation. We can 
therefore obselve the high H, uptake result- 
ing fro111 Li d o ~ i n n .  
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doped samples was tested by TGA. For Li- Morgan Sheng,'John D. Scott't 
doped samples (CNT and graphite), the satu- 
rated H, uptake was measured at 653 K after Regulation of N-methyl-D-aspartate (NMDA) receptor activity by kinases and 
each conlplete desoiytion at 823 K, whereas phosphatases contributes to the modulation of synaptic transmission. Target- 
for K-doped carbon nlaterials it was mea- ing of these enzymes near the substrate is proposed to enhance phosphoryl- 
sured at 298 K after each run of desorption at ation-dependent modulation. Yotiao, an NMDA receptor-associated 
773 K. The results show that after more than bound the type I protein phosphatase (PPI) and the adenosine 3',5'-mono- 
20 cycles of absorption-desorption; the ca- phqsphate (CAMP)-dependent protein kinase (PKA) holoenzyme. Anchored PP1 
pacities of H, uptake are reduced by less than was active, limiting channel activity, whereas PKA activation overcame con- 
10% for both systems. High H,,pressure was stitutive PP1 activity and conferred rapid enhancement of NMDA receptor 
shown to favor the H, absorpt~on. which is currents. Hence, yotiao is a scaffold protein that physically attaches PP1 and 
expected because H, uptake is a volurne- PKA to NMDA receptors to regulate channel activity. 
reducing process. TPD measurenlents have 
demonstrated that the Li-doped CNT exposed The molecular organization of the postsynaptic the NMDA receptor subunit isofonn NRlA 
to H, at 10 at111 for 1 hour can store the same density (PSD) is thought to be essential for the identified a protein called yotiao that interacts 
amount of H, as those systems at ambient fidelity and precision of synaptic signaling with the COOH-te~~ninal C1 exon cassette of 
pressure for 2 hours. events. Clustering and i~nmobilization of neu- the ion channel (9). We isolated cDNAs encod- 

Although K-doped carbon samples can 
absorb H, at lower temperahre than Li- 
doped samples, Li-doped carbon materials 
are che~nically Inore stable than K-doped car- 
bon materials. They can nlaintain H, uptake 
capability even after being heated in air at 
373 K for hours. and 110 flame resulted even 
when the samples were exposed to air at 673 
K after H, had been absorbed. On the other 

rotransmitter receptors and ion challnels is 
maintained by an intricate system of protein- 
protein interactions (1). For example, NMDA 
receptors are clustered and coupled to the cy- 
toskeleton through association with PDZ do- 
main-containing proteins. a-actinin. and neuro- 
filaments (2). Many signaling pathways con- 
verge on the M D A  receptor (3). allowing the 
regulation of channel activity in response to the 

ing fragments of yotiao by an illteraction clon- 
ing strategy to identifjl A-lunase anchoring pro- 
teins (AK4Ps) (10) and confilmled that the 
protein bound NRlA (11). Expression of full- 
length yotiao fi~sed to green fluorescent protein 
(GFP) in HEK 293 cells (1.2) resulted in detec- 
tion of a -210-kD protein that bound the type 
TI regulato~y subunit of PKA (HI) ;  as assessed 
by overlay assay (Fig. 1A). I~lmlunoprecipita- 

hand, K-doped CNT can be oxidized rapidly generation of second messengers such as Ca2+ tions with antiserunl to yotiao from brain ex- 
and even cause fire sholtly after being ex- and CAMP (4, 5) .  P K 4  and PP1 activities matts also isolated an RII binding protein and 
posed to air at room temperature. Nevelthe- ~nodulate NMDA receptor f~~nction and appear were enriched by a factor of 10.5 i 2 (11 = 3) 
less, both systems may find wide applications 
in the near future. 
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to act in opposition to each other (5, 6). Indi- 
vidual targeting or ancho~ing proteins such as 
A M 7 9  and spinophillin localize the kinase 
and phosphatase at the PSD (7. 8).  

A hvo-hybrid screen for proteins that bind 
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for PKA catalytic subunit activity (Fig. 1. B and 
C). We mapped the RI1 binding site to a region 
behveen residues 1229 and 1480 by screening a 
falllily of reconlbinant yotiao fragments (Fig. 
ID) in the overlay assay (Fig. 1. E and F). 
Residues 1440 to 1457 appear to include the 
principal determinants for H I  interaction be- 
cause a synthetic peptide encompassing this 
region blocked RII binding (Fig. IF). These 
findings indicate that yotiao functions to anchor 
PKA to NMDA receptors. 

Because PP1 activity participates in the 
regulation of NMDA receptors (6), we con- 
ducted experiments to address whether the 
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Fig. 1. Identification of 
yotiao as an AKAP. (A) 
Binding of full-length yo- 
tiao to RII. Lysates pre- 
pared from HEK 293 cells 
transfected with control 
vector or a yotiao-CFP 
fusion construct (72) were 
subjected to  RII overlay 
assay as described (23). 
(B) lmmunoprecipitation of 
yotiao. Preimmune or im- h a  * F  
mune (aYotiao) sera were . . . ? > A ' -  $ # $ a s $  $$,$ 
used for immuno~reci~ita- ,Mo LEEEVAKVIVSMSIAFAO ,&, & p a . a a 8 '  eOeOhQ46 @a* 22e 
tion from rat brain extracts 
as described (24). lmmu- 1645 
noprecipitated complexes 808 U 1645 

808 1385 
were blotted and subjected 808 1229 
to RII overlay assay (23). 1229 n 1645 4 
(C) Coprecipitation of PKA 1229 o 1480 3 

activity with yotiao im- 1480 ' 1645 2 

mune sera. Immunoprecipi- l~Ekll Pept~de Block 

tated material from rat 
brain extracts was incubated with cAMP (10 mM) and assayed for kinase activity (24) in the 
absence (control) and presence (+PKI) of 4 p M  PKA inhibitor PKI (75). Values show activity relative 
to  that associated with preimmune serum and are expressed as means + SEM of three separate 
experiments. (D) Schematic representation of recombinant yotiao fragments (25). Abbreviations 
for amino acid residues: A, Ala; E, Clu; F, Phe; I, Ile; K, Lys; L, Leu; M, Met; Q, Cln; 5, Ser; and V, Val. 
(E and F) Mapping of the RII binding domain on yotiao. Fragments of yotiao were blotted and 
assayed for RII binding by overlay assay in the absence (E) and presence (F) of a yotiao peptide 
encompassing residues 1440 to  1457 (10 pM). Equal amounts of protein were present in each lane, 
as determined by staining of protein on the membrane. Relative molecular mass standards (in 
kilodaltons) are at the left in (A), (B), and (E). 

Fig. 2. PP1 targeting by 
yotiao. (A) Coimmuno- 
precipitation of PP1 with 
yotiao. Irnrnunoprecipi- 
tations from rat brain 
extracts were done as 
described (24) with af- 
finity-purified antibod- 
ies to yotiao or con- 
trol immunoglobulin C 
(IgC). Precipitates were 
blotted and probed with 
antibodies to PP1. alu- 
tamic acid decarbuox- 
ylase (CAD), or yotiao 
(26). (B) Schematic r e p  
resentation of recombi- 
nant yotiao fragments 
(25). (C to  E) Direct in- 
teraction of PP1 with 

PP-1 blndlng 
1 Brie 

/.' RIA 
blndlng 8h 

yotiao in overlay as- 45- -I J 

says. Bacterial extracts 36- dJ 
- 

expressing recombinant 24- 
+- - - 

fragments of yotiao were 
separated by SDS-PACE, Protein Stain PP1 Overlay Gm Peptide Block 
transferred to a mem- 
brane, stained with Coomassie blue (C), and subjected 
to PP1 overlays (26) in the absence (D) and presence (E) 
of 10 p M  Cm peptide (73). Relative molecular mass 
standards (in kilodaltons) are at the Left. (F) Yotiao does 
not inhibit PP1 catalytic activity. Phosphatase activity rm 
was assayed (27) using phosphorylase a as substrate in 
the presence of increasing concentrations of recombi- 
nant yotiao fragment (residues 808 to  1385). Phospha- 
tase activity was also assayed using PKA-phosphoryL- 
ated CST-NR1A fusion protein (NRlA; solid bars) in the 
absence (control) or presence (yotiao) of 500 nM re- ~hompi~wyuu. NRIA 

cornbinant yotiao fragment (residues 808 to  1385) 
(27). The number of times each experiment was performed is indicated. 
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Fig. 3. Facilitation by yotiao of CAMP-depen- 
dent modulation of recombinant NMDA recep- 
tor currents. (A) Whole-cell recordings from 
HEK 293 cells expressing heteromeric NMDA 
receptors consisting of NRlA and NRZA (74). 
Currents were evoked every 30 s by 500-ms 
applications of glutamate (1 mM) in the pres- 
ence of glycine (100 pM). Examples of the time 
course for modulation of recombinant NMDA 
receptor currents by the cell-permeant CAMP 
analog 8-CPT cAMP are shown for a cell in 
which yotiao was expressed (solid circles) and a 
control cell (open squares). Currents were nor- 
malized to  the peak of the first sweep recorded 
from each cell. Representative traces are in- 
cluded from a yotiao-expressing cell (1) before, 
(2) during, and (3) after 8-CPT cAMP treatment. 
(B) Bar graph of the percent increases in peak 
whole-cell current from control cells, yotiao- 
expressing cells, yotiao-expressing cells in the 
presence of PKI peptide (10 pM), and yotiao- 
expressing cells in the presence of Ht31 peptide 
(10 pM) upon application of 8-CPT CAMP. Sig- 
nificant differences (*P < 0.01 compared to  
control; **P < 0.01 compared to  yotiao) and 
the number of times each experiment was per- 
formed are indicated. (C) Bar graph of the 
percent increases in peak whole-cell current in 
response to  application of 8-bromo-CAMP (8-Br 
CAMP; 100 pM). Solid bar, cells expressing 
NRlA; open bars, cells expressing NRlC. Ex- 
pression of yotiao is indicated. Significant dif- 
ferences (*P < 0.01 compared to  NRlA) and 
the number of times each experiment was 
performed are indicated. 
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phosphatase also associated with yotiao. Irnmu- 
noprecipitation of yotiao fiom brain extracts 
resulted in the copurification of PP1 (Fig. 2A). 
In overlay assays. PP1 bound to recoillbiaaat 
fragments (Fig. 2B) expressed in Esche?.ichiil 
coli (Fig. 2C) eacompassiag residues 1 17 1 to 
1229 of yotiao (Fig. 2. C and D) and the PP1 
targeting illhibitor peptide Gm (13) blocked 
PP1 binding to yotiao (Fig. 2E). A hallinarlt of 
some PPI targeting subunits is the presence of a 
Lys-Val-X-Phe (KVXF) motif that binds to an 
allosteric site 011 the catalytic subunit of the 
phosphatase (13). Although yotiao contains this 
motif. it is not essential for interaction between 
yotiao and PP1. Binding of yotiao had no effect 
on PP 1 activity to\\ ard an NRl A receptor frag- 
ment, and it enhanced activity by a factor of 
1.9 i 0.2 (iz = 6) to\\ ard phospholylase a with 
a median effective conce~~tsatioa (ECS,) of 52 
nM (Fig. 2F). These results s11oi~ that yotiao is 
not an illhibitor of PP1 activity. hence yotiao 
inay target active PP1 to the hMDA receptor. 

Currents through NMDA receptors are ea- 
hanced after activation of PKA ( 5 )  or inhibi- 
tion of PP1 (6). We made \\hole-cell record- 
ings of transfected HEK 293 cells (14)  that 

0 5 10 
Time lmlnl 

I N R I A  

N R I C  

control yotlso control yotlao control yotlao 
+ Gm + G m  + OA + OA + Gm + Grn 

Fig. 4. Influence of yotiao on regulation of 
NMDA receptor activity by PP1 activity. (A) 
Time course of normalized peak NMDA recep- 
tor currents from a control and yotiao-express- 
ing cell during whole-cell dialysis of Cm pep- 
tide (10 KM). Traces shown below correspond 
to the first and last sweep from the indicated 
cells after establishment of the whole-cell con- 
figuration. (B) Bar graph summarizing percent 
increase of peak whole-cell current for cells 
expressing NRlA (solid bars) and cells express- 
ing NRlC (open bars). Expression of yotiao and 
the use of Gm or okadaic acid (OA, 1 I*M) are 
indicated. Significant differences (**P < 0.01, 
*P < 0.05) and the number of times each 
experiment was performed are indicated. 

expressed NMDA receptors alone or NMDA 
receptors and yotiao. Application of the cell- 
pemleaat cAMP analog 8-(4-chlorophenyl- 
thio)-CAMP (8-CPT CAMP) ellhaaced hMDA 
currents to a greater extent in cells expressiilg 
yotiao (54.9 i 11.0%; 11 = 10: P < 0.01) 
than in control cells (16.1 ? 4.6%; ii = 8) 
(Fig. 3, A a i d  B). The effect of cAMP was 
inhibited by introduction of the PKA inhibi- 
tor peptide PKI 5-24 (1.5) or the RII anchor- 
ing inhibitor peptide Ht3 1 (16) through the 
patch pipette. These results indicate that an 
anchored pool of PKA was required for aug- 
mentation of the cui~eat  (Fig. 3B). 

Yotiao did not facilitate the CAMP-depen- 
dent modulation of NMDA receptors contain- 
ing the NRlC subunit, which lacks the C1 
exoa (Fig. 3C). This suggests that yotiao 
selectively regulates NMDA receptors coa- 
taining the C1 exoa. 

To test for a role of yotiao-dependent ail- 
choring of PP1 in the modulation of YMDA 
receptor activity, \ve dialyzed Gin peptide into 
cells through the patch pipette. A significantly 
greater time-dependent increase ill NMDA re- 
ceptor cull-ents (41.1 ? 10.2%; ?? = 7: P < 
0.01) Lvas obselved in yotiao-expressing cells 
relative to coabol cells (9.0 i 3.6%: 11 = 7). 
The effect of the inhibitor plateaued \~ithin 5 to 
10 lnin of establishing the whole-cell coafigu- 
ration. whereas no effect Lvas obselved ~vit11 
NMDA receptors containing NRlC (Fig. 4). 
Applicatioil of the phosphatase inhibitor olta- 
daic acid at 1 p,M (but not 10 n1M) produced an 
effect siinilar to that of Gill peptide on NRlA in 
yotiao-expressing cells (28.5 f 3.6%: 11 = 4; 
P < 0.05) relative to conh'ol cells (2.3 i 6.9%: 
n = 4) (Fig. 4B). These results indicate that 
tonic PP1 activity associated with yotiao may 
negatively regulate NMDA receptors. The ex- 
tent of the increase m curre~lt coilducted by the 
NMDA receptor Lvas related to the initial extent 
of current desensitization (1 7 ) .  This relatioil 
was observed whether we activated PICA or 
displaced PPl . Thus, yotiao-mediated localiza- 
tion of PKA and PPl,  the balance of ellryine 
activities, and the iilitial state of the chalulel all 
appear to contribute to the modulation of cur- 
rent flou through the hMDA receptor. 

Uilder resting co~~ditioas, targeting of a coa- 
stihltively active phosphatase may favor dephos- 
pholylatio~~ of the channel or a closely associ- 
ated protein. Ho~vever. \vl~en illtracellular con- 
centsations of CAMP are increased, PICA may 
be released *om anchored sites; thus shifting 
the equilibrium in favor of pl~osphoiylation, 
\T hich in h11-11 results in ellhaacemeat of cull-ent 
flow tlxough the hMDA receptor. 

Subcellular targeting of phosphatases and 
kiilases is achieved through various mecha- 
nisms. Sometnnes both enzymes interact with 
each other (18). but complex formation more 
often requires an intemlediai>- protein (19). 
Scaffold proteiils such as sterile 5. Pbs-2, a id  
Jip-1 inullobilize successive ineinbess in a lti- 

nase cascade such that signals can be efficiently 
hansduced from one kinase to the next (20). In 
contrast. lnultivalent scaffold proteiils such as 
AICAP79, PTG, and InaD coordinate the loca- 
tion of several sig~aliag eilzyines and thus in- 
tegrate diverse signals at a specific intsacellular 
site (7, 21). Yotiao facilitates the dynamic reg- 
ulation of an individual phospl~oproteia by as- 
seinbling a signaling coinplex that contains a 
kinase and phosphatase with opposiilg activities 
and is attached to the substsate. Interestingly, 
the gene encoding yotiao is alternatively spliced 
to yield a family of proteins, illcluding the 
recently identified AKAP350. This splice vari- 
ant of yotiao also coiltaills the iilteraction do- 
maills for PP1. NRlA. and PICA and therefore 
inay also mediate the asselnbly of a macromo- 
lecular complex involved in regulating hMDA 
receptor filnction. Because a number of ion 
channels appear to be modulated by closely 
associated lcinases and phosphatases (22), other 
st~uchlral ele~nellts silllilar to yotiao may exist. 
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Messenger RNA Export 
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In order to identify additional factors required for nuclear export of messenger 
RNA, a genetic screen was conducted with a yeast mutant deficient in a factor 
Glelp, which associates with the nuclear pore complex (NPC). The three genes 
identified encode phospholipase C and two potential inositol polyphosphate . . 
kinases. Together, these constitute a signaling pathway from phosphatidylino- 
sitol4,5-bisphosphate to inositol hexakisphosphate (IP,). The common down- 
stream effects of mutations in each component were deficiencies in IP, syn- 
thesis and messenger RNA export, indicating a role for IP, in CLE7 function and 
messenger RNA export. 

Spatial and temporal activatioil of inositol sig- their enviro~lment. An essential coillpoilent 
naling pathways nlodulates protein inacl~ines within this circuitly is pl~ospl~atidyli~~ositol 4.5- 
that enable eukaiyotic cells to sense changes in bisphosphate (PIP,). \vhich is hydrolyzed by 
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