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Hydrogen trioxide (HO,) has long been postulated as a key intermediate in  
important atmospheric processes but  has proved diff icult t o  detect. The mol -  
ecule was unequivocally detected in  experiments based on neutralization- 
reionization and neutralization-reionization/collisionally activated dissociation 
mass spectrometry, using protonated ozone (HO,+) as the  charged precursor. 
Hydrogen trioxide is a relatively stable species and has a H - 0 - 0 - 0  connectivity 
and a l i fetime exceeding 1 0 P  seconds at  ambient temperature. 

Hydrogen trioxide (130,) is a species that 
has been long postulated in at~nospheric 
chemistry as a sink for hydroxyl radicals (1, 
2) and a key intermediate in the H ' 0, 
reaction, the source of vibrationally excited 
hydroxyl radicals ahose einission spectrum 
is related to night-sky afterglow (3-9). De- 
spite its relevance to atmospheric chemistry 
and its intrinsic fundarnental interest, H 0 3  
has not been experimentally detected to 
date, and it has remained open whether it 
can survive dissociatioil into 0, and OH. 
There is no direct experimental evidence on 
the existence, stability. and lifetime of 
HO,, although ther~nochernical arguments, 
based on the known heat of formation of 
the HO,+ ion (10). coinbilled \vith an ex- 
perimental estinlate of its iecombination 
energy (11). suggest that HO, may be ob- 
servable at 298 K (12) 

The relevance of the problem and the lack 
of direct experimental evidence has stiinulat- 
ed an inteilse theoretical effort The results of 
the numerous studies reported (2, 6, 13-26) 
appear to critically depend on the amount of 

ans\vers regarding the stability of HO,. The 
most recent theoretical results (23-26), re- 
versing earlier conclusions (6), predict that, 
at 298 K, HO, is unstable or marginally 
stable (23) and should not be observable, 
owing to prompt dissociation into 0, and 
OH. 

Here, we provide experimental evidence 
for the existence of the elusive HO, radical, 
based on its actual detection as an isolated 
gaseous species. On the basis of our previ- 
ous study on the preparation of protonated 
ozone, HO,+ ( lo ) ,  we used this cation as 
the charged precursor in neutralization- 
reionization (NR) mass spectrometry (27, 
28) experiments, inlplernented on the last 
generation of dedicated instruments, ahose 
inlproved perfornlances (in particular, the 
higher sensitivity in the detection of weak 
peaks from the reionization step) promise 
to overcome problems encountered with 
earlier spectrometers. 

Protonated ozone was generated in the 
chemical ionization source of a multisector 
Inass spectrometer (Fig. 1) by the reaction 

theoi-y employed and provide contradictory 
AH++ 0; - HO; - + A (1) 

(mlz) = 49, mere accelerated to kinetic 
energies between 4 and 8 kV and were 
mass-selected before undergoing tmo con- - - 
secutive collision events in two separate 
cells located along the beam path and con- 
taining suitable target gases. A fraction of 
the HO,+ ions \\,as neutralized in the first 
cell by electron transfer fro111 target gas 
n~olecules, yielding the corresponding neu- 
tral species, HO,. together with charged 
and neutral fragments. The parent ions that 
escaped neutralization and any charged 
fragments that fornled a e r e  removed by a 
deflecting electrode. leaving a beam con- 
taining only fast-moving neutral species 
that entered the second gas cell. In this cell, 
reionization occurred either by electron 
loss from the neutral species, yielding cat- 
ions (NRf Inass spectrometry), or by elec- 
tron transfer from target gas molecules. 
yielding anions (NR- Inass spectrometry). 
In either case, the charged species a e r e  
mass-selected, and their Inass spectrum was 
recorded. Detection of a "recovery" signal 
that has a peak at the same mlz as that of the 
original ions (HO,' in the case of interest) 
would indicate that they survived the se- 
quence of NR events and, hence, that neu- 
tral HO, has a lifetime exceeding the time 
interval between the neutralizing and the 
reionizing collisions ( - lop6 s in our ex- 
perimental setup). A substantial "recovery" 
peak at mls = 49. the same ratio as that of 
the HO,+ cations. was observed in the 
NRf spectra (Fig. 2A). Recovery signals at 
mlz = 49, although less intense, are also 
present in the NR- spectra, corresponding 
to H O ,  ions, which are formally the an- 
ions of the H,O, acid (Fig. 2B). Reaction 1 
was also performed with D,- rather than 
H,' as the acid. The DO,+ ions of n ~ l s  = 

50 thus obtained were assayed by NR+ 
mass sDectrometry, and we obtained a re- 
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Fig. 1. Schematic illus- 
tration of the experi- 
mental setup. CIIEI, 
combined chemical ion- 
izationfelectron impact 
source; ES1 and ES2, 

Deflector 

MCP 
Detector 

Deflector , , 

electrostatic sector ana- l ES2 1 u Ivzers: 1, collision cell Ci/EI ESl  Magnet I ? 
;ontainlng the neutral- 
~zation gas, 2, colllslon m - m - +  ~ k ~ - ~ - ~ ' ~ ~ ~  .. . . . .. . photomultiplier 
cell contaln~ng the source 
relon~zatlon gas; deflec- 2 T 

Collision Gas Cells 
4 1  Pusher 

tors, 1-kV electrodes to  
remove any charged 
species; 3 and 4, collision cells, either one containing He (for the CAD experiments only); pusher, deflecting electrode to drive the mass-selected ions into the TOF 
spectrometer equipped with the microchannel plate (MCP) detector. 
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chemistry. 
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Fig. 4. (A) CAD spectrum of mlz = 49 ions (kinetic energy is 0.800 keV and target gas is He) 
obtained by neutralization and consequent reionization of HO,' ions. (B) CAD spectrum of HO,' 
ions from the protonation of ozone, recorded under the same conditions as those in (A). 
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