- E. Heinz and P. G. Roughan, *Plant Physiol.* 72, 273 (1983).
- 4. S. Mongrand, J.-J. Bessoule, F. Cabantous, C. Cassagne, *Phytochemistry* **49**, 1049 (1998).
- L. Kunst, J. Browse, C. R. Somerville, Proc. Natl. Acad. Sci. U.S.A. 85, 4143 (1988).
- J. Browse and C. R. Somerville, in *Arabidopsis*, E. M. Meyerowitz and C. R. Somerville, Eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1994), pp. 881–912.
- P. Dörmann, S. Hoffmann-Benning, I. Balbo, C. Benning, *Plant Cell* 7, 1801 (1995).
- H. Härtel, H. Lokstein, P. Dörmann, B. Grimm, C. Benning, *Plant Physiol.* **115**, 1175 (1997); F. Reifarth *et al., Biochemistry* **36**, 11769 (1997); H. Härtel, H. Lokstein, P. Dörmann, R. N. Trethewey, C. Benning, *Plant Physiol. Biochem.* **36**, 407 (1998); L.-J. Chen and H.-M. Li, *Plant J.* **16**, 33 (1998).
- A. van Besouw and J. F. G. M. Wintermans, *Biochim. Biophys. Acta* 529, 44 (1978); J. W. M. Heemskerk, T. Storz, R. R. Schmidt, E. Heinz, *Plant Physiol.* 93, 1286 (1990).
- 10. J. Browse, N. Warwick, C. R. Somerville, C. R. Slack, Biochem. J. **235**, 25 (1986).
- 11. An F_2 population of plants derived from the cross of *act1* (*Arabidopsis* Biological Resource Center, Columbus, OH) and *dg01* was screened by TLC or gas chromatography. About 1/16th of the F_2 plants were homozygous *act1,dg01* double mutants with reduced amounts of 7,10,13-hexadecatrienoic acid as in *act1* and reduced amounts of the digalactosyl lipid as in *dq01*.
- M. Shimojima et al., Proc. Natl. Acad. Sci. U.S.A. 94, 333 (1997).
- M. A. Block, A.-J. Dorne, J. Joyard, R. Douce, J. Biol. Chem. 258, 13281 (1983).
- K. Cline and K. Keegstra, *Plant Physiol.* **71**, 366 (1983).
- T. Teucher and E. Heinz, *Planta* **184**, 319 (1991); E. Maréchal, M. A. Block, J. Joyard, R. Douce, *J. Biol. Chem.* **269**, 5788 (1994).
- 16. Of 135 F_2 plants derived from the cross $dgd1 \times$ Col-2, plants with crossovers between markers nga162 and nga172 were selected [C. J. Bell and J. R. Ecker, *Genomics* **19**, 137 (1994)]. In this F_2 population, we mapped the *DGD1* locus relative to markers g4523, fad7, g4547, 5E-5, and 18A-1. Similarly, we screened 424 F_2 plants from the cross $dgd1 \times Ler$ for crossovers between markers nga127 and ATHCHIB. We used this mapping population to score markers g2488a and 31A-H. We obtained the RFLP markers from the *Arabidopsis* Biological Resource Center (g4523, fad7, g2488a, g4547) or from genomic fragments (31A-H, 5E-5, 18A-1) isolated from cosmids.
- We used DNA of *fad7*, g4547, and g2488a to isolate genomic DNA fragments from different libraries {CIC yeast artificial chromosome library [C. Carilleri *et al.*, *Plant J.* **14**, 633 (1998)], IGF bacterial artificial chromosome library [T. Mozo, S. Fischer, H. Shizuya, T. Altmann, *Mol. Gen. Genet.* **258**, 562 (1998)], and *Arabidopsis* cosmid library [K. Meyer, G. Benning, E. Grill, in *Genome Mapping in Plants*, A. H. Patterns, Ed. (Academic Press, New York, 1996), pp. 137–154]).
- 18. Cosmid clones were transferred into Agrobacterium tumefaciens C58C1(pCV2260) and used to transform Arabidopsis Col-2 wild type by vacuum infiltration [N. Bechtold, J. Ellis, G. Pelletier, C. R. Acad. Sci. Ser. III Life Sci. 316, 1194 (1993); A. F. Bent et al., Science 265, 1856 (1994)]. We crossed transformants with dgd1 plants and analyzed segregation in the F₂ generation. Complementation was assumed when of a minimum of 100 tested F₂ plants (one to three independent crosses per cosmid) carrying the T-DNA, all were phenotypically wild type.
- U. Uwer, L. Willmitzer, T. Altmann, *Plant Cell* 10, 1277 (1998).
- 20. For direct complementation analysis, the DGD1 cDNA released from pBluescriptIISK(+) with Sma I, Xho I was ligated into Sma I, Sal I of pBINAR-Hyg [D. Becker, Nucleic Acids Res. 18, 203 (1990); A. von Schaeven, thesis, Freie Universität Berlin (1989)] in the sense orientation behind the CaMV 35S promoter. This construct was directly transferred into dgd1.
- A 459-bp Xho I, Pvu II fragment including the expression cassette was isolated from pQE31 (Qiagen Inc.)

- A.-J. Dorne, M. A. Block, J. Joyard, R. Douce, *FEBS Lett.* 145, 30 (1982).
- 23. Supported in part by grants from the US Department of Energy and from the Bundesministerium für Bildung und Forschung to C.B. and by a Feodor Lynen fellowship from the Alexander von Humboldt-Foundation and a research scholarship from the Deutsche Forschungsgemeinschaft to P.D. We are indebted to Ed Tolbert for stimulating discussions up until his death in December 1998. We thank H. Ohta for providing the monogalactosyl lipid synthase plasmid. We are grateful to B. Hintzmann and A. Rosenthal for sequencing genomic DNA and cDNA clones. The help of J. Huber in screening and analyzing complemented plants is especially acknowledged.

10 March 1999; accepted 19 May 1999

Receptor for Motilin Identified in the Human Gastrointestinal System

Scott D. Feighner,^{1*} Carina P. Tan,^{1*} Karen Kulju McKee,^{1*}
Oksana C. Palyha,¹ Donna L. Hreniuk,¹ Sheng-Shung Pong,¹
Christopher P. Austin,³ David Figueroa,³ Douglas MacNeil,¹
Margaret A. Cascieri,¹ Ravi Nargund,² Raman Bakshi,²
Mark Abramovitz,⁴ Rino Stocco,⁴ Stacia Kargman,⁴
Gary O'Neill,⁴ Lex H. T. Van Der Ploeg,¹ Jilly Evans,⁴
Arthur A. Patchett,² Roy G. Smith,⁵ Andrew D. Howard¹[†]

Motilin is a 22-amino acid peptide hormone expressed throughout the gastrointestinal (GI) tract of humans and other species. It affects gastric motility by stimulating interdigestive antrum and duodenal contractions. A heterotrimeric guanosine triphosphate-binding protein (G protein)-coupled receptor for motilin was isolated from human stomach, and its amino acid sequence was found to be 52 percent identical to the human receptor for growth hormone secretagogues. The macrolide antibiotic erythromycin also interacted with the cloned motilin receptor, providing a molecular basis for its effects on the human GI tract. The motilin receptor is expressed in enteric neurons of the human duodenum and colon. Development of motilin receptor agonists and antagonists may be useful in the treatment of multiple disorders of GI motility.

Gastrointestinal motility is a coordinated neuromuscular process that transports nutrients through the digestive system (1). Impaired GI motility, which can lead to gastroesophageal reflux disease, gastroparesis (diabetic and postsurgical), irritable bowel syndrome, and constipation, is one of the largest health care burdens of industrialized nations. Motilin, a peptide that is secreted by enterochromaffin

cells of the small intestine (2), exerts a profound effect on gastric motility by inducing interdigestive (phase III) antrum and duodenal contractions (3-5). The structurally unrelated macrolide antibiotic erythromycin induces similar effects that are perhaps mediated by interaction with motilin receptors in the GI tract, accounting for erythromycin's side-effects, including vomiting, nausea, diarrhea, and abdominal muscular discomfort (6, 7).

Motilin is highly conserved across species and is synthesized as part of a larger inactive prohormone. Mature motilin (22 amino acids) is generated by removal of its secretory signal peptide and cleavage in its COOH-terminus (8-11). Although high-affinity binding sites for motilin have been detected in the GI tract of humans and other species and in the central nervous system of rabbits, their molecular structure has remained undefined (12-18). High-affinity (dissociation constant, $K_d \sim 2$ nM) and low-density (binding capacity, $B_{max} \sim$

¹Department of Metabolic Disorders, ²Department of Medicinal Chemistry, Merck Research Laboratories, Building RY-807-265, 126 East Lincoln Avenue, Rahway, NJ 07065, USA. ³Department of Human Genetics, Merck Research Laboratories, Sumneytown Pike, West Point, PA 19486, USA. ⁴Department of Biochemistry and Molecular Biology, Merck-Frosst Center for Therapeutic Research, 16711 TransCanada Highway, Kirkland, Quebec H9H 3L1, Canada. ⁵Huffington Center on Aging and Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030–3498, USA.

^{*}These authors contributed equally to this work. †To whom correspondence should be addressed. Email: howarda@merck.com

REPORTS

20 fmol per milligram of protein) binding sites for motilin are present in smooth muscle cells of the GI tract of humans, cats, and rabbits (12-17) and in rabbit cerebellum (18).

G protein-coupled receptors (GPC-Rs) related to the hypothalamic and pituitary receptor for the growth hormone secretagogues (GHSs) (19) were cloned from human genomic DNA libraries (20). GHSs mediate sustained pulsatile growth hormone release (21). One of these clones, GPR38, showed a 52% overall amino acid sequence identity to the human GHS receptor (GHS-R), with 86% sequence identity in the transmembrane (TM) domains. GPR38 was classified as an orphan GPC-R because its natural ligand had not yet been identified. Expression of RNA encoding GPR38 was found in human stomach, thyroid, and bone marrow. The GPR38 protein sequence was predicted solely on the basis of genomic DNA sequence because efforts to isolate cDNA clones by standard library screening proved unsuccessful and exon-intron boundaries could not be resolved (20).

Here, we isolated cDNA clones representing correctly spliced GPR38 mRNA using a combination of techniques. Rapid amplification of cDNA ends (RACE) and reverse transcriptase polymerase chain reaction (RT-PCR) were conducted on RNA isolated from human thyroid and from cells transfected with an expression plasmid containing the GPR38 intron. Two distinct sequences were revealed that correspond to alternative use of two splice-donor sequences and a common splice-acceptor sequence (22). GPR38-A mRNA encoded a polypeptide of 412 amino acids with seven predicted a-helical TM domains, the hallmark feature of GPC-Rs (23), whereas GPR38-B mRNA encoded a 386-amino acid polypeptide with five predicted TM domains (Fig. 1). GPR38 was shown to be a single conserved gene in mammals (20) and map to human chromosome 13q14-q21, though defects in GI function that map to this region have not been reported. To determine if the GPR38 gene is conserved distantly in evolution, we identified a related gene (75E7) in the teleost puffer fish Spheroides nephelus (which evolved ~ 400 million years ago), a species that contains $\sim 90\%$ of all mammalian genes (24). The protein sequence for 75E7 was 54% identical to human GPR38 (47% to the human GHS-R), contained a similar exon-intron structure, and therefore may represent an ortholog of the human GPR38 (25).

GHS-Rs and native receptors for motilin appear to be GPC-Rs that activate the phospholipase C signal transduction pathway (*16*, *21*). Hence, to identify a ligand for GPR38-A that contains seven TM domains, we developed a high-throughput assay that measures Ca^{2+} release with aequorin, a bioluminescent Ca^{2+} -sensitive reporter protein. In this assay, activation of a GPC-R by a ligand induces inositol trisphosphate–coupled mobilization of intracellular calcium and concomitant calciuminduced aequorin bioluminescence (26-28). A broad set of peptide and nonpeptide molecules was tested at a single concentration (100 nM peptide, 1 μ M nonpeptide) in a stable cell line expressing aequorin (HEK-293/aeq17) in the

presence and absence of GPR38-A protein that was expressed transiently (28). GPR38-A was expressed as a single protein species of relative molecular mass ~45,000 (29). These sets (>500 substances) contained ligands for known and unknown membrane receptors, ion channels, and intracellular signaling enzymes and receptors (30). A bioluminescent response that

 $1 \ \text{ATG} \ \text{GGC} \ \text{AGC} \ \text{CCC} \ \text{TGG} \ \text{AAC} \ \text{CGC} \ \text{AGC} \ \text{AGC} \ \text{AGC} \ \text{AGC} \ \text{AGC} \ \text{AGC} \ \text{AGG} \ \text{AGG$ <u>TM1</u> 150 GGG GTG AGC GGC AAC GTG GTG ACC GTG ATG CTG ATC GGG CGC CGG GAC ATG TTG 225 S TM2 L I G G 226 TAC CTG GGC AGG ATG GCC GTG TCC GAC CTA CTC ATC CTG CTC GGG CTG CCG TTC GAC 76 Y L G S M A V S D L L I L L G L P F D 300 CGC 100 375 125 450 376 CTG CTG CAC ATG ACC GCG CTC AGC GTC GAG CGC TAC CTG GCC ATC TGC CGC CCG CTC 126 **L** L т А L s v <u>E R Y</u> L A I C R P 150 TM4 451 ACC CGG CGC CGC GTC CGC GCG CTC $\overline{\text{ATC}}$ $\overline{\text{GCT}}$ $\overline{\text{GTG}}$ $\overline{\text{GTC}}$ $\overline{\text{GTG}}$ $\overline{\text{GCC}}$ $\overline{\text{GTG}}$ $\overline{\text{GCC}}$ $\overline{\text{GTG}}$ $\overline{\text{GCC}}$ $\overline{\text{GTG}}$ $\overline{\text{GTC}}$ $\overline{\text{$ 525 179 600 TCG 526 CTG GTG GGC GTC GAG CAG GAC CCC GGC ATC TCC GTA GTC CCG GGC CTC AAT GGC ACC GCG CGG ATC GCC TCC 176 L V G V E Q D P G I S V V P G L N G T A R I A S 601 CCT CTC GCC TCG TCG CCG CCT CTC TGG CTC TCG CGG GCG CCA CCG CCG TCC CCG TCG GGG CCC GAG ACC GCG 675 А Ρ Ρ s Ρ s G 225 <u>TM</u>5 676 GAG GCC GCG GCG CTG TTC AGC CGC GAA TGC CGG CCG AGC CCC GCG CAG CTG GGC GCG CTG CGT GTC ATG 750 TGG 226 E А A A L s R Е С R Ρ s Ρ А Q L G А L R 250 825 275 751 GTC ACC ACC GCC TAC TTC CTG CCC TTT CTG TGC CTC AGC ATC CTC TAC GGG CTC ATC GGG 251 V T T A Y F F L P F L C L S I L Y G L I G 900 300 CTG

GPR38-A (MTL-R1A): 7-TM, 412 amino acids

Donor A Acceptor 901 C/gt-----intron----ag/TG 1704

901 301 GTG GTG GTT CTG GCA TTT ATA ATT TGC V V L A F I I C TGG TTG W L CCC P н <u>TM7</u> TCT S 958 ATT TAC ATA AAC ACG GAA GAT TCG CGG ATG ATG TAC TTC CAG TAC TTT Q Y F 1032 1107 1033 7787 CCA CTC TAC ATT TCA AAG AAG TAC AGA GCG GCG GCC TTT 369 ь 1108 CTG CTC GCA AGG AAG TCC AGG CCG AGA GGC TTC 1182 CAC AGA AGC AGG GAC ACT GCG GGG GAA GTT GCA GGG GAC ACT 370 L L R К G Н s Ð 394 А R R R А G 1183 GGA GGA GAC ACG GTG GGC TAC ACC GAG ACA AGC GCT AAC GTG AAG ACG ATG GGA TAA 395 G G D T V G Y T E T S A N V K T M G teri 1239 412

GPR38-B (MTL-R1B): 5-TM, 386 amino acids

Donor B Acceptor 1051 CG/gt-----intron----ag/T 1704

901		CGT	AAG	TGG	AGC	CGC	CGT	GGT	TCC	AAA	GAC	GCC	TGC	CTG	CAG	TCC	GCC	CCG	CCG	GGG	ACC	GCG	CAA	ACG	CTG	972
301		R	K	W	S	R	R	G	S	K	D	A	C	L	Q	S	A	P	P	G	T	A	Q	T	L	324
973	GGT	CCC	CTT	CCC	CTG	CTC	GCC	CAG	CTC	TGG	GCG	CCG	CTT	CCA	GCT	CCC	TTT	CCT	ATT	TCG	ATT	CCA	GCC	TCC	ACC	1047
325	G	P	L	P	L	L	A	Q	L	W	A	P	L	P	A	P	F	P	I	S	I	P	A.	S	T	349
L048	CGC	CGT	GGT	GGT	GGT	TCT	GGC	ATT	TAT	AAT	TTG	CTG	GTT	GCC	CTT	CCA	CGT	TGG	CAG	AAT	САТ	TTA	CAT	aaa	CAC	1122
350	R	R	G	G	G	S	G	I	Y	N	L	L	V	A	L	P	R	W	Q	N	Н	L	H	K	H	374
L123 375	GGA G	AGA R	TTC F	GCG A	GAT D	GAT D	GTA V	CTT L	CTC L	TCA S	GTA V	CTT L	TAA term	n												1161 386

Fig. 1. Identification of two alternatively spliced forms of GPR38 (MTL-R1) (39). [A comparison of these two forms to human GHS-R and puffer fish clone 75E7 is available as supplementary material (25)]. GPR38-A (MTL-R1A) mRNA is formed by joining nucleotide 901 (donor A: imperfect splice donor C/gt) to nucleotide 1703 of the genomic GPR38 clone (perfect acceptor sequence-ag/TG). Formation of this splice junction results in the donor supplying C and the acceptor supplying TG to form the triplet codon for leucine- 301 (indicated by an arrow). GPR38-B mRNA is formed by joining of nucleotide 1051 (donor B: perfect splice donor-CG/gt) to the same acceptor as for GPR38-A. Formation of this splice junction results in the donor supplying CG and the acceptor supplying T to form the triplet codon for arginine-351 (indicated by an arrow). Donor and acceptor supplying T to form the triplet codon for arginine-351 (indicated by an arrow). Nonor and acceptor supplying T to form the triplet codon for generation for mith intron sequence shown in lower case type. Nucleotide and protein sequence numbering are given for the open reading frame sequence for GPR38-A and GPR38-B. TM represents predicted transmembrane domains; they are indicated by bold type and numbered 1 to 7.

Table 1. Pharmacology of native and cloned motilin receptors. Potencies are listed of various motilin peptides (analogs and truncated forms) and nonpeptide GI-active drugs against the native rabbit motilin receptor and the cloned human MTL-R1A. The rank order of potency for motilin-derived peptides correlates with respect to binding and functional assays performed on native rabbit motilin receptors (human ¹²⁵I-motilin binding and muscle strip contractility responses) and the cloned human receptor (human ¹²⁵I-motilin binding and aequorin bioluminescence). GI-active drugs whose mechanism of

action is distinct from motilin (cisapride: serotonin receptor mixed agonist and antagonist; metoclopromide: dopamine receptor antagonist) do not bind or functionally activate the cloned human MTL-R1A at doses as high as 10 μ M. Values for the human MTL-R1A are from a single experiment repeated three times \pm 10 SEM. Native rabbit motilin receptor data are compiled from (1, 33, 34). NA denotes data not available. Residues that differ from human motilin are underlined. Amino acid abbreviations are in (39) (Lⁿ denotes norleucine).

		Cloned motilin rec	eptor (human)	Native motilin receptor (rabbit)				
Pepti	de or nonpeptide drug	¹²⁵ I-Motilin binding (IC ₅₀ , nM)	Aequorin assay (EC ₅₀ , nM)	¹²⁵ I-Motilin binding (IC ₅₀ , nM)	Contractility assay (EC ₅₀ , nM)			
	1 5 10 15 22							
Human 1–22	FVPIFTYGELQRMQEKERNKGQ	0.2	2.2	0.6	1			
1-19	FVPIFTYGELQRMQEKERN	0.3	4.1	0.9	9			
1-13	FVPIFTYGELQRM	0.3	. 3.8	15	100			
1-12	FVPIFTYGELQR	0.9	72	76	324			
1-11	FVPIFTYGELQ	142	138	150	642			
1–9	FVPIFTYGE	>10,000	>10,000	3,900	>10,000			
1-7	FVPIFTY	>10,000	<10,000	2,800	>10,000			
1–5	FVPIF	>10,000	>10,000	3,800	>10,000			
2–22	VPIFTYGELQRMQEKERNKGQ	33	626	NA	>1,000			
10-22	LQRMQEKERNKGQ	>10,000	>10,000	417	9,000			
¹³ Leu 1–22	FVPIFTYGELQR <u>L</u> QEKERNKGQ	0.9	3.6	0.7	7			
¹³ nLeu ¹⁴ Glu 1–22	FVPIFTYGELQR <u>L^EEKERNKG</u> Q	0.3	10	NA	NA			
³ Phe ¹³ Leu 1–22	FV <u>F</u> IFTYGELQR <u>L</u> QEKERNKGQ	1.3	>10,000	NA	NA			
Rabbit 1-22	FVPIFTY <u>S</u> ELQRMQE <u>R</u> ERN <u>R</u> G <u>H</u>	0.2	13	NA	NA			
Dog 1–26	FVPIFT <u>HS</u> ELQ <u>KIR</u> EKERNKGQ	0.5	4	1	3			
Double constant	IRNK	282	2 000	12	202			
Erymromycin Demitia		282	2,900	43 NIA	302 NA			
Koxitnromycin			3,200	INA	NA NA			
Ciacurida		>10,000	>10,000	INA	INA NA			
Cisapride		~10,000	≥10,000	INA	INA			

was greater than four times background (determined in the absence of GPR38 expression) was recorded for both the peptide motilin and the nonpeptide macrolide erythromycin, which was reported to be an agonist of native motilin receptors (31). Concentration dependence curves confirmed this observation (Fig. 2). The half-maximal effective concentration (EC₅₀) for human and porcine motilin was 2.2 nM, whereas erythromycin was less potent (EC₅₀ of 900 nM), consistent with studies performed on native motilin receptors (14). Binding of ¹²⁵Ilabeled human motilin (32) to cell membranes prepared from transfected cells that expressed GPR38-A (Fig. 3, A and B) showed that GPR38-A conferred high-affinity, saturable, and specific binding through two distinct bind-

Fig. 2. Activation of the MTL-R1A receptor. Concentration-dependent increases in luminescence were observed with motilin, erthryomycin, and roxithromycin, but not with cisapride and metclopromide [EC₅₀ (nM): 2.2, 2900, 3200, >10,000, >10,000, respectively]. A HEK-293 cell line stably expressing the bioluminescent indicator aequorin [HEK-293/aeq17; (26)] was transfected with a MTL-R1A expression plasmid (28). Cells were then exposed to the test ligands, and the integrated luminescence was recorded over 30 s. Activation (%) represents the luminescent response normalized to a

ing sites ($K_{d1} = 111$ pM, $K_{d2} = 960$ pM; $B_{max1} = 240$ fmol/mg, $B_{max2} = 520$ fmol/mg). Overexpression of the cloned GPR38-A may deplete available G proteins needed for high-affinity binding, thus accounting for the observation of two binding sites (33). Both binding sites were G protein coupled (>80% inhibition of binding with 100 nM guanosine 5'-O-(3'-thiotriphosphate). On the basis of this data, GPR38-A was renamed motilin-R1A (MTL-R1A).

Structure-function analyses of a series of truncated motilin peptides (Table 1 and Fig. 3C) show that the motilin peptide minimally contains an NH₂-terminal region (amino acids 1 to 11) essential for biological activity, and a COOH-terminal α -helical domain that stabilizes the NH₂-terminus

(34, 35). The rank order of potency of several motilin peptide analogs determined with the cloned MTL-R1A in the MTL-R1A functional and binding assays correlated with their reported potency measured by muscle-strip organ contraction and native receptor binding assays (Table 1). The NH₂-terminal fragments from amino acid 1 to 12 were similar in potency to full-length motilin (amino acids 1 to 22), and removal of the first amino acid resulted in a significant drop in potency. Erythromycin and the related macrolide roxithromycin gave median inhibitory concentration (IC50) values, respectively, of 281 and 613 nM and EC_{50} values of 2900 and 3200 nM. The structurally unrelated GI motilitystimulating drugs metoclopromide and cisapride, which have affinity for dopamine and serotonin receptors, respectively, were inactive even at high (micromolar) doses.

MTL-R1A RNA was expressed in a subset of interstitial cells in the human duodenum, jejunum, and colon (Fig. 4) (36). These cells also demonstrated immunoreactivity for neuron-specific enolase. In the colon, most MTL-R1A-positive cells also expressed nitric oxide synthase (NOS), the enzyme responsible for production of nitric oxide, a major inhibitory gut neurotransmitter (Fig. 4C). In addition, a small number of cells stained positive for choline acetyl transferase,

maximum response evoked by 10 μM motilin. Data for each point on the dose-response curve represent the average of triplicate measurements for each sample (±10% SEM).

Fig. 3. Binding of human ¹²⁵I-motilin to crude membranes of HEK-293 cells expressing MTL-R1A. (A) Saturation isotherm. Increasing concentrations of radioligand were used to demonstrate saturable and specific binding: squares, total binding; triangles, nonspecific binding; and inverted triangles, specific binding. (B) Scat-chard analysis of ¹²⁵I-motilin binding saturation isotherm suggests two binding sites of different affinities and binding capacities (bound units are femtomole per milligram of protein; free units are nanomolar). (C) Competition analysis for the binding of 0.2 nM ¹²⁵Ihuman motilin. Potencies obtained for inhibition of radioligand binding were in accord with results from the aequorin functional assay (Fig. 2) [IC₅₀ (nM): 0.2 (human motilin), 0.5 (canine motilin), 282 (erythromycin), 613 (roxithromycin), >10,000 (cisapride), >10,000 (metclopromide]. Binding in the absence of excess unlabeled human motilin (100 nM) represents 100% of control binding. Binding data were analyzed by a nonlinear curve-fitting program (Prism, version 2.0; GraphPad Software, San Diego, CA). Results shown are the means $(\pm$ SEM) of triplicate determinations.

a synthetic enzyme for acetylcholine, the major stimulatory neurotransmitter of the gut. This expression pattern suggests that motilin may be stimulatory in the colon as well as in other levels of the human GI tract, because NOS-positive smooth muscle motor neurons are thought to inhibit distal circular smooth muscle activity in advance of a stimulatory bolus (37). In the duodenum, a separate population of cells having an elongate appearance consistent with smooth muscle were also MTL-R1A-positive (Fig. 4D). Finally,

REPORTS

analysis of human MTL-R1A expression with mRNA extracted from additional regions of the GI tract revealed transcripts in esophagus, ileum, and jejunum (38).

To our knowledge, the receptor for a natural hormone has not been identified before by mass screening. The high amino acid sequence identity between MTL-R1A and GHS-R implies that motilin and a natural ligand for the GHS-R, which has yet to be identified, may also be related. The identification of the human MTL-R will aid the development of safe and selective motilin receptor agonists and antagonists useful for the treatment of GI disorders and help elucidate the role of motilin in human physiology.

References and Notes

- . C. Scarpignato, *Dig. Dis*. **15**, 112 (1997).
- J. C. Brown, M. A. Cook, J. R. Dryburgh, Can. J. Biochem. 51, 533 (1973).
- 3. Z. Itoh, Peptides 18, 593 (1997).
- P. Poitras, in *Gut Peptides: Biochemistry and Physiology*, J. H. Walsh and G. J. Dockray, Eds. (Raven, New York, 1994), pp. 261–304.
- 5. M. Tonini, Pharmacol. Res. **33**, 217 (1996)
- Z. Itoh, M. Nakaya, T. Suzuki, Am. J. Physiol. 247, G688 (1984).
- F. H. Weber, R. D. Richards, R. W. McCallum, Am. J. Gastroenterol. 88, 485 (1993).
- 8. Y. Seino et al., FEBS Lett. 223, 74 (1987).
- C. T. Bond, G. Nilaver, B. Godfrey, E. A. Zimmerman, J. P. Adelman, Mol. Endocrinol. 2, 175 (1988).
 - P. Adelman, Mol. Endocrindi. 2, 173 (1988).
 D. I. Daikh, J. O. Douglass, J. P. Adelman, DNA 8, 615 (1989).
 - 11. H. Yano et al., FEBS Lett. 249, 248 (1989).
 - 12. T. Sakai et al., Regul. Pept. 53, 249 (1994).
 - I. Depoortere, G. Van Assche, T. L. Peeters, *Brain Res.* 777, 103 (1997).

for MTL-R1A. In situ signal is seen in red (Texas Red), NOS immunoreactivity in green (FITC), and all cell nuclei in blue (DAPI). All scale bars are 15 μm.

Fig. 4. Expression of

MTL-R1A in the human GI tract by in situ hy-

bridization and colocalization with nitric acid synthase-containing neurons: (A) colon, antisense probe for MTL-

R1A; (B) colon, control

sense probe for MTL-R1A; (C) colon, double-

labeling to detect MTL-

R1A (antisense probe)

and NOS with anti-

body to NOS; (D)

jejunum, antisense

probe for MTL-R1A;

and (E and F) duodenum, antisense probe

- 14. P. Poitras et al., Peptides 17, 701 (1996).
- 15. T. L. Peeters, V. Bormans, G. Vantrappen, *Regul. Pept.* 23, 171 (1988).
- 16. I. Depoortere and T. L. Peeters, ibid. 55, 227 (1995).
- 17. _____, G. Vantrappen, Peptides 14, 1153 (1993).
- I. DePoortere and T. L. Peeters, Am. J. Physiol. 272, G994 (1997).
- 19. A. D. Howard et al., Science 273, 974 (1996).
- 20. K. K. McKee et al., Genomics 46, 426 (1997).
- 21. R. G. Smith et al., Endocr. Rev. 18, 621 (1997).
- 22. Inspection of the GPR38 genomic DNA sequence revealed two potential mRNA splice sites corresponding to consensus boundaries for exon-intron junctions [P. Senapathy, M. B. Shapiro, N. L. Harris, Methods Enzymol. 183, 252 (1990)]. An imperfect donor site [TGC/gt; perfect donor sequence (CCG/gt)] was found at nucleotides 1929 to 1931 [of the 3068-base pair (bp) genomic fragment of GPR38 including 5' untranslated region and intron]; a perfect splice-donor site was found at nucleotides 2080 to 2082; and a perfect splice-acceptor site [sequence (pyrimidine-rich stretch ag/TG)] was found at nucleotide 2729. To determine which splice forms exist naturally, we performed RACE on polyadenylated [poly(A)+] mRNA isolated from human thyroid gland, and we conducted RT-PCR on HEK-293/aeq17 cells transfected with an expression plasmid containing the GPR38 genomic DNA intron. Directional RACE reactions were conducted on 1 μg of thyroid poly(A)⁺ mRNA that contained RNA encoding GPR38 (20). Primers were synthesized corresponding to the end of the coding region of GPR38 (AP1: 5'-CCATCCTAATACGACTCACTATAGGGC) and the 3' end of the GPR38 coding region including the translation termination codon TAA (5' RACE1: 5'-TTATC-CCATCGTCT TCACGT TAGCGCT TGTCTC). Conditions (Marathon cDNA, Touchdown PCR; Clontech, Palo Alto, CA) were as follows: 94°C for 1 min; 5 cycles of 94°C for 30 s and 72°C for 4 min; 5 cycles of 94°C for 30 s and 70°C for 4 min; and 25 cycles of 94°C for 20 s and 68°C for 4 min. An ~1.4-kb amplified product was identified that hybridized with a 32Plabeled probe derived from the TM2 to TM4 region (3F/4R probe) of GPR38. This product was subcloned

into PCR-Script vector (Invitrogen) and sequenced. We confirmed these results using RT-PCR by transfecting an expression plasmid containing the GPR38 gene (the complete open reading frame interrupted by a single intron of \sim 0.7 kb) into HEK-293/aeq17 cells. RNA was then isolated [poly(A)+ Pure Kit, Ambion] and subjected to Northern (RNA) blot analysis with the 3F/4R probe, which revealed two hybridizing bands: a 2.4-kb band containing the unspliced intron, and a \sim 1.4-kb band containing spliced forms. RT-PCR was then performed (Superscript 2 One-Step Kit, Life Technologies) on mRNA from transfected HEK-293/aeq17 cells with the forward primer 5' RACE1 and reverse primer 3' RACE2 (TM5 region: 5'-CTGCCCTTTCTGTGCCTCAGCATCCTCTAC). An \sim 500-bp product was cloned (TA vector pCR2.2, Invitrogen, Carlsbad, CA), sequenced, and found to be a mixture of both spliced forms. Assembly of the complete open reading frame for GPR38-A without intronic sequence was performed by ligation of an exon 1 fragment (Not I digestion of a MTL-R1A plasmid containing the intron in pCDNA-3) to pCDNA-3.1 containing a Not I–EcoR I exon 2 fragment.

- 23. W. C. Probst, L. A. Snyder, D. I. Schuster, J. Brosius, S. C. Sealfon, DNA Cell Biol. 11, 1 (1992)
- 24. S. Brenner et al., Nature 366, 265 (1993)
- 25. GenBank database [D. Benson, M. S. Boguski, D. J. Lipman, J. Ostell, B. F. Ouellette Nucleic Acids Res. 26, 1 (1998)] assession numbers are as follows: human GHS-R (HSU60179), human GPR38-A (MTL-R1A) (O43193), and fish clone 75E7 (AF082210). The alignment data are available at www.sciencemag.org/ feature/data/1039909.shl
- 26. D. Button and M. Brownstein, Cell Calcium 14, 663 (1993)
- 27. K. K. McKee et al., Mol. Endocrinol. 11, 415 (1997). 28. Measurement of GPR38-A activity in the aequorinexpressing stable reporter cell line HEK-293/aeq17 was made with a Luminoskan RT luminometer (Labsystems, Gaithersburg, MD). HEK-293/aeq17cells $(8 \times 10^5$ cells plated 18 hours before transfection) were transfected with 11 μ g of human GPR38-A plasmid DNA in the presence of 132 μ g of lipofectamine (Life Technologies, Gaithersburg, MD). After 40 hours, the apo-aequorin in the cells was converted to holo-aequorin by incubation for an additional 1 hour in the presence of the essential chromophore coelenterazine (10 μ M; Molecular Probes, Eugene, OR) under reducing conditions (300 $\,\mu\text{M}$ reduced glutathione) in ECB buffer [140 mM NaCl, 20 mM KCl, 20 mM Hepes-NaOH, pH 7.4, 5 mM glucose, 1 mM MgCl₂, 1 mM CaCl₂, and bovine serum albumin (BSA; 0.1 mg/ml)], transferred into ECB buffer, washed once, and resuspended to 500,000 cells/ml. A 100-µl sample of cell suspension (corresponding to $5 imes 10^4$ cells) was then injected into the test ligand plate (96-well format), and the integrated light emis-

sion was recorded over 30 s. in 0.5-s units. Lysis buffer (20 µl) (0.1% final Triton X-100 concentration) was then injected and the integrated light emission recorded over 10 s, in 0.5-s units. The fractional response values for each well were calculated by taking the ratio of the integrated response to the initial challenge to the total integrated luminescence including the Triton X-100 lysis response.

- 29. To place an $\rm NH_2$ -terminal FLAG epitope in frame with the GPR38-A coding sequence, we constructed a mammalian expression vector by ligating a Pme I fragment excised from the pcDNA-1.1 expression vector (Invitrogen, Carlsbad, CA) containing GPR38 into the Eco RV site of pFLAG/CMV-2 vector (Kodak Imaging Systems, New Haven, CT). After lipofection (Life Technologies, Gaithersberg, MD) of this plasmid into HEK-293/aeq17 cells, a protein of the expected size (\sim 45 kD) was detected in crude cell membranes by protein immunoblot analysis with the M1 monoclonal antibody to FLAG (Kodak Imaging Systems).
- 30. Ligand plates were assembled from commercial sources (Research Biochemicals International, Natick, MA: Phoenix Pharmaceuticals, Mountain View, CA) and contained an assortment of nonpeptide small molecules: for example, adenosines/purinerigics (theophylline, reserpine, phenyltoin, phenylbutazone), adrenergics/histaminergics (alprenolol, prazocin, phentolamine, histamine, cimetidine), cholinergics/ion channel modulators (carbachol, atropine, amiloride, diltiazem, Bay K-8644), dopaminergics (ergocristine, haloperidol, clozapine bromocryptine), glutamatergics (aspartic acid, capsaicin, glutamic acid, kainic acid, quisqualic acid), opioids (levallorphan, natrexone, norcodeine, nalaxone), serotonergics (ketanserin, quipazine, mianserin, tryptophan), enzyme inhibitors/GABAergics (captopril, papaverine, baclofen, allopurinol, indomethicin, erythromycin), and peptides (deltorphin, thrombin, cortistatin, amylin, neuromedin B, guanylin, neuropeptide EI, enterostatin, dynorphin A, amyloid b-protein, secretin, β -MSH, endothelin-3, GLP-1, GLP-2, TRH, adrenomedullin, BNP-32, ANF, katacalcin, galanin, pancreastatin, PACAP, γ-MSH, urotensin, calcitonin, PTH, CRF, prodynorphin, vasopressin, motilin, valosin, NPY 13-16, NPY 3-36, IL-8, thymosin, C5a, RANTES, GnRH, oxytocin, substance P, VIP, somatostatin, bombesin, b-endorphin, GHRP-6, endothelin-1, ACTH, angiotensin-2, bradykinin, fMLP, neurotensin, glucagon, CGRP, [des-Arg-9]bradykinin, endothelin-2, and gastrin).
- 31. T. Peeters et al., Am. J. Physiol. 257, G469 (1989).
- 32. Human motilin (COOH-terminally amidated; Research Genetics, Huntsville, AL) was radiolabeled with ¹²⁵I at Tyr⁷ to a specific activity of ~2000 Ci/mmol (Woods Assay, Portland, OR). The binding of human ¹²⁵I-motilin to crude cell membranes prepared from HEK-293/aeq17 cells expressing MTL-R1A was determined as follows. Membranes were prepared on ice 48 hours after transfection. Cells were

washed twice with 10 ml of phosphate-buffed saline and once with 1 ml of homogenization buffer (HB: 50 mM tris-HCl, pH 7.4, 10 mM MgCl₂). Cells were scraped into 10 ml of HB and then lysed with a Polytron device (Brinkmann, Syosset, NY; three bursts of 10 s at setting 4). The homogenate was centrifuged for 20 min at 11,000g at 0°C, then the crude membrane pellet was resuspended in HB supplemented with 1.5% BSA and kept on ice. Binding reactions were performed at 20°C for 1 hour in 0.5 ml containing 0.1 ml of membrane suspension (~1 μ g of protein), 10 μ l of human ¹²⁵Imotilin, 10 μl of competing peptide, and 380 to 390 μl of HB. Bound radioligand was separated by rapid vacuum filtration through GF/C grade filters (Whatman, Maidstone, UK) that were pretreated for 1 hour with 0.5% polyethylenimine. After application of the membrane suspension to the filter, the filter was washed three times with 3 ml of ice-cold HB buffer. Radioactivity bound to the filters was quantitated by gamma counting. Specific binding was defined as the difference between total binding and nonspecific binding that occurred in the presence of 100 nM unlabeled human motilin.

- 33. T. Kenakin, Pharmacol. Rev. 48, 413 (1996).
- M. J. Macielag et al., Peptides 13, 563 (1992).
 P. Miller et al., ibid. 16, 11 (1995).
- 36. In situ hybridization was performed on 8- μ m-thick, formalin-fixed, paraffin-embedded sections, with a digoxigenin-labeled complementary RNA probe corresponding to the complete open reading frame of MTL-R1A with tyramide-Texas Red detection, as described [K. Petrukhin et al., Nature Genet. 19, 214 (1998)]. NOS was detected with an antibody and visualized with a fluorescein isothiocyanate (FITC)conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Sections were counter-stained for nuclear detection with 4',6-diamidoino-2 phenylindole (DAPI). Human tissues were obtained from the National Disease Research Interchange (Philadelphia, PA).
- A. J. Porter, D. A. Wattchow, S. J. Brookes, M. Costa, 37. Gastroenterology **113**, 1916 (1997). RNA encoding MTL-R1A was detected by RNase Pro-
- 38. tection Assay (RPA) (MAXIscript and HybSpeed RPA kits; Ambion, Austin, TX). The anti-sense MTL-R1A probe corresponded to nucleotides 1234 to 1516 of the human MTL-1A with \sim 60 nucleotides of vector sequence (pLitmus 28, New England Biolabs, Beverly, MA). Poly(A) + mRNA from tissues was purchased from Clontech (Palo Alto, CA).
- 39. Single-letter abbreviations for the amino acid residues are as follows: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr; and Lⁿ, n Leu.

9 March 1999; accepted 24 May 1999

for more information, see http://www.sciencemag.org/feature/beyond/visions.html