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Near-24-Hour Period of the 
Human Circadian Pacemaker 
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Regulation of circadian period in humans was thought to differ from that of 
other species, with the period of the activity rhythm reported to range from 
13 to  65 hours (median 25.2 hours) and the period of the body temperature 
rhythm reported to  average 25 hours in adulthood, and to shorten with age. 
However, those observations were based on studies of humans exposed to light 
levels sufficient to confound circadian period estimation. Precise estimation of 
the periods of the endogenous circadian rhythms of melatonin, core body 
temperature, and cortisol in healthy young and older individuals living in 
carefully controlled lighting conditions has now revealed that the intrinsic 
period of the human circadian pacemaker averages 24.18 hours in both age 
groups, with a tight distribution consistent with other species. These findings 
have important implications for understanding the pathophysiology of dis- 
rupted sleep in older people. 

Natural selection has favored endogenous cir- 
cad~an rhythmic~ty that, in the absence of pen- 
odic synchronizing cues from the environment, 
persists with an intrinsic period close to that of 
Earth's rotation in nearly all living organisms, 
including prokaryotes. Clock genes paticipat- 
ing in transcriptional-translational feedback 
loops generate circadian oscillations in plants, 
insects, and mammals (1, 2), with a period 
(3-5) that is usually near 24 hours, is highly 
stable, and exhibits remarkably little interindi- 
vidual variability within a given species-per- 
cent coefficients of variation (PCVs) of only 
0.08% in the kangaroo rat, 0.3% in hamsters, 
0.54% in the gila monster, and 0.7% in mice (3, 
4, 6). An age-related shortening of circadian 
period, which is a determinant of the phase 
angle of entrainment, has been hypothesized to 
account for the circadian phase advance and 
early-morning a\vakemng observed frequently 
in the elderly (7-11). 

Quantification of circadian period in hu- 
mans has yielded inconsistent results. Although 
the free-nmning circadian period of the human 
activity rhythm was believed to average more 
than 25 hours, as was initially reported nearly 
40 years ago (12), it has since been reported to 
vary from 13 to 65 hours in normal subjects, 
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with a PCV of 30.3% (13). The average free- 
running circadian period of the human body 
temperature rhythm has been reported to vary 
with both the experimental environment and the 
subjects' behavior, ranging from 24.2 to 25.1 
hours (13-15). However, the generality of these 
findings has been limited by reports that activ- 
ity (1 6, 17), knowledge of time of day (18), and 
exposure to ordinary indoor room light (19, 20) 
can shift circadian phase or alter the observed 
free-mnning circadian period in h ~ ~ m a n s  and 
thus may have influenced those observations 
(21). Here, we assessed the intrinsic period of 
the circadian pacemaker in 24 young and older 
human subjects, each living for approximately 
1 month in an environment free of time cues 
under conditions of controlled exposure to the 
light-dark cycle on a forced desynchrony pro- 
tocol pioneered by Kleitrnan more than 60 
years ago (22), using methodology detailed 
elsewhere (21, 23). 

We studled 11 healthy young men (mean 
age 23 7 years) and 13 healthy older subjects (9 
men and 4 women, mean age 67 4 years) for 29 
to 38 days (24) During the forced desynchrony 
protocol, the bedtime of each subject has  
scheduled to occur 4 hours later each day for 
-3% weeks. Each subject's sleep-wake cycle 
was thus scheduled to a 28-hour "day" (Fig. 1). 
Rhythms driven by the circadian pacemaker 
were thereby desynchronized from each sub- 
ject's sleep-wake cycle. In this way, exposure 
to both photic and nonphotic (25, 26) synchro- 
nizers linked to the scheduled sleep-wake cycle 
was distributed evenly across all circadian 
phases (21). The 28-hour day length on this 
forced desynchrony protocol was (i) far enough 
outside the range of entrainment of the human 
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circadian pacemaker so as to minimize the in- period measured in these studies reflects the 42.85-hour forced desynchrony protocol and 
fluence of the imposed schedule on the ob- intrinsic period of a central circadian pacernak- exhibited a ternperature period of 24.15 hours, 
served circadian period (21, 27, 28), and (ii) er. Therefore, our estimate of the intrinsic peri- as compared to a period of 24.16 hours on the 
imposed consistently throughout the protocol. od of the circadian pacemaker for each subject 28-hour forced desynchrony protocol. These 
This was done to avoid the artifactual extension was computed by averaging the peiiod esti- results are also consistent with the 24.20-hour 
of the range of entrainment associated with the mates derived from each available variable. temperature period estimate of an additional 
fractional desynchronization protocol (29), in These intrinsic circadian period estimates fiom young man (1 134) who participated in an 11- 
which a gradually lengthening light-dark sched- the 24 subjects were narrowly distributed, with hour forced desynchrony experiment. Thus, the 
ule was imposed (13). Also, to minimize the nearly 90% of the estimates between 24.00 and observed circadian period was equivalent on 
circadian resetting effects of ambient light (19, 24.35 hours (Fig. 2). The average estimated various imposed sleep-wake and associated 
28), we maintained constant low light levels ( ISEM) intrinsic period was 24.18 i 0.04 light-dark cycles (1 1,20,28, or 42.85 hours). In 
during the scheduled wake episodes (Fig. 1). hours (PCV 0.54%) in the young men and contrast, when two of the same subjects partic- 
Several subjects returned for additional month- 24.1 8 1 0.04 hours (PCV 0.58%) in the older ipated in classical fiee-nming studies in which 
long studies so that h e  could compare the subjects (see Table 1) they self-selected thelr exposure to a llght-dark 
results of the forced desynchrony protocol n ~ t h  The lntnnslc perlod we observed does not cycle (light, - 150 Iwc, dark, <O 03 lux), the 
those of the class~cal free-nmning protocol (30) appear to have been dependent on the length of obsened perrod of the ternperatue cycle \\as 

Core body temperature, plasma melatonln, the Imposed sleep-wake cycle The ~ntnnslc substant~ally longer [subject 11 11, 25 1 hours 
and plasma cortisol were sampled during the perrod of the core body temperature rhythm (Flg l), subject 1105, 25 0 hours] 
forced desynchrony protocols. Endogenous cir- derived frorn subjects 11 11 and 1507 on both a We hypothesize that the longer, more vari- 
cadian period was estimated using a non- 20- and a 28-hour forced desynchrony study able circadian period of the temperature rhythm 
orthogonal spectral analysis WOSA) technique, were nearly equivalent: 24.29 and 24.28 hours, observed in such classical free-nming proto- 
in which these data were fitted simultaneously respectively, for subject 11 11 (see Fig. 1) and cols (35) [averaging 25.1 hours (PCV 2.5%) 
with periodic components corresponding to 24.26 and 24.16 hours, respectively, for subject among fiee-lunning subjects whose activity- 
both the forced period of the imposed sleep- 1507. Estimates of the intrinsic period of the rest cycle was synchronized with their body 
wake cycle and the sought-for period of the core body temperature data alone frorn the ternperature rhythm and 24.9 hours (PCV 
endogenous circadian rhythm, together with 
their haimonics, using an exact maximum like- 
llhood fitting procedure (31, 32). 

The estimated intrinsic periods of the core 
body temperature, melatonin, and cortisol 
rhythms were highly correlated when analyzed 
within an individual subject (Table 1) (33), 
which sapports the hypothesis that the circadian 

combined group of 24 subjects on the 28-hour 
forced desynchrony protocol (mean F SEM = 

24 17 t 0 03 hours) and from a serles of 14 
subjects studled on a 20-hour forced desyn- 
chrony protocol from bvo other experiments 
(mean I SEM = 24 15 i 0 04 hours) (34) 
were not s~gnificantly different (P = 0 621 1) 
One older subject (1507) also part~clpated m a 

0.8%) among internally desynchronized sub- 
jects (13)] occurs because both synchronized 
and spontaneously desynchronized fiee-run- 
ning subjects preferentially select room light 
exposure before the circadian temperature min- 
imum, and darkness after that minimum (36, 
37), thereby systematically eliciting light-in- 
duced phase delays and minimizing light-in- 

Clock Hour 
24 6 12 18 24 6 12 18 2 4 2 4  6 12 18 24 6 12 18 2 4 2 4  6 12 18 24 6 12 18 24 

Fig. 1. Experimental results from a 22-year-old man (subject 111 1) living in an environment free of 
time cues on a 20-hour forced desynchrony protocol (left panel), a classical free-running protocol 
(center panel), and a 28-hour forced desynchrony protocol (right panel). The rest-activity cycle is 
plotted in a double raster format, with successive days plotted both next to and beneath each other 
and clock hour indicated on the abscissa. Baseline sleep episodes were scheduled at their habitual 
times (based on an average of their schedule during the week before laboratory admission). Thereafter, sleepldark episodes (solid bars, light intensity <0.03 
lux) were scheduled for 6.67 hours (33% of imposed day) in the 20-hour protocol, self-selected by subject (averaging 28% of cycle) in the free-running 
protocol, and scheduled for 9.33 hours (33% of imposed day) in the 28-hour protocol. During wake episodes, the light intensity was -15 lux (20- and 28-hour 
protocols) or -150 lux (free-running protocol). Constant routines (open bars) for phase assessments of the endogenous circadian temperature nadir (@) and 
the fitted melatonin maximum (A) were conducted before and after forced desynchrony in all subjects except 1209, who began forced desynchrony 
immediately after the three baseline days. Period estimations were performed with the use of temperature data (continuously collected via rectal thermistor 
throughout all studies) and plasma melatonin and cortisol data (assayed from samples collected every 20 to 60 min during segments of the study in the 20- 
and 28-hour protocols). The estimated phase of the circadian temperature rhythm (dashed line) was determined by nonorthogonal spectral analysis (37, 32). 
The temperature period estimates are nearly equivalent under both forced desynchrony protocols (20-hour protocol, 24.29 hours; 28-hour protocol, 24.28 
hours), independent of the imposed rest-activity cycle. However, the estimated temperature period (25.07 hours) observed during free-running conditions 
(with self-selected rest-activity cycle averaging 27.07 hours) was much longer. 
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duced phase advances (28, 38). We thus hy- 
pothesize that this unequal distribution of the 

pacemaker is likely to be under the same tight Although the group average period estimate 
genetic control as has been demonstrated for a from our series is similar to that recently report- 

sleep-wake and associated light-dark cycle 
across circadian phases in the free-nming pro- 
tocol (as compared with their more equal dis- 
tribution in the forced desynchrony protocol) 
was responsible for the overestimation of circa- 

wide variety of other species (I, 3-5). Precise ed using a forced desynchrony protocol of only 
estimation of the circadian period is critical for 5 days in duration (41), the interindividual vari- 
pursuing the possible genetic basis of circadian ability of circadian period estimates derived 
rhythm sleep disorders. from that much shorter protocol was signifi- 

Our results on the forced desynchrony cantly greater than it was for estimates derived 
dian period derived from the free-running pro- 
tocol. This hypothesis is supported by (i) the 
results of simulations using Kronauer's mathe- 
matical model of the resetting effect of light on 
the human circadian pacemaker, which indicate 

protocol, together with those of others (14, from our 3- to 4-week protocol (F test, P < 
15, 41), are in contrast to those of Wever, 0.0001), with more than half of the period 
who observed an average circadian tempera- estimates from that study outside the 95% con- 
ture period of 24.8 hours in subjects living in fidence interval of the present study (41, 43). 
constant conditions in whom internal desyn- Even though none of the subjects in our 

that such feedback effects of ordinary room 
light alone can lengthen the apparent circadian 
period observed under classical free-running 
conditions by more than 0.7 hours (28); (ii) the 
observation of a shorter average endogenous 

chronization was forced by an imposed 20-, experiments were allowed to nap, we ob- 
28-, 30-, or 32-hour cycle of ordinary room served a consistent period averaging 24.18 
light alternating with absolute darkness (13). hours, contrary to a prior report of a 24.7- 
However, naps around the time of the tem- hour circadian period in non-napping subjects 
perature nadir (42), which are associated with (14). We hypothesize that this discrepancy 

circadian temperature period derived from free- 
running subjects when their rest-activity cycle 
spontaneously desynchronizes from their body 
temperature cycle, and thereby distributes light 
exposure more evenly across all circadian phas- 
es (13, 28, 36, 39); and (iii) the results of 
subjects 1105 and 11 11, who each exhibited a 

reduced retinal light exposure, may have ex- was observed because the sleep episodes of 
erted feedback effects that influenced the es- the non-napping subjects in that earlier repol-t 
timate of the average circadian period (28), were not evenly distributed across circadian 
because in that study the timing of sleep was phases (14) and were therefore apt to induce 
not restricted to the scheduled dark episodes. feedback effects on the pacemaker (25, 28). 

Table 1. lntrinsic periods of the temperature (T,), melatonin (T,), and cortisol (7,) rhythms (expressed as 
hours:minutes) in young and older subjects in the 28-hour forced desynchrony protocol. For each subject, 
the estimated period of each of the three rhythms lies within the 95% confidence interval of the other 
two rhythms. T,, T,, and T, were highly correlated [Pearson correlation: T, versus T,, r = 0.951; T, versus 
T,, r = 0.982; T, versus T,, r = 0.984 (P < 0.0001 in all cases)]. Our composite estimate of the intrinsic 
period for each subject (T) was computed by averaging T,, T,, and T', if available. Constraints on the total 
blood collection volume and vascular access limited the number of older subjects for whom cortisol and 
melatonin data were available; also, in two  young subjects (1145 and 1257), an inadequate number of 
blood samples were collected and analyzed for cortisol concentrations to obtain a reliable estimate of 
circadian period. 

much longer apparent circadian period when 
studied on the classical free-running protocol 
than when studied on the forced desynchrony 
protocol in din1 light. 

Unlike the highly variable, much longer cir- 
cadian period estimates derived from body tem- 
perature data in classical free-running human 
studies, the much smaller coefficient of varia- 
tion (PCV.0.55%) and the nearer-to-24-hour 
mean value (24.18 hours) of the intrinsic circa- 

Subject Age (years) Sex T, ( i S D )  T~ ( i S D )  T' ( i  SD) T 
dian period estimates derived from all three 
variables in these forced desynchrony studies is 
consistent with coefficients of variation and 

Young subjects 
24:16 i :02 24:14 + :05 
24:14 ? :01 24:14 i :02 
24:17 i :01 24:17 + :03 
24:08 i :01 24:09 i :01 
24:09 i :01 24:07 ? :02 
23:53 + :01 23:51 + :03 
24:09 + :01 24:lO i :04 
24:15 i :01 24:17 + :01 
24:09 i :01 24 : l l  + :04 
24:06 i :01 24:05 i :00 
24:19 ? :02 24:23 ? :01 
23:53-24:19 23:51-24:23 

24:lO 24: l l  
00:07 00:08 
00:02 00:03 

1105 
1106 
1111 
1120 
1122 
1133 
1136 
1144 
1145 
1209 
1257 
Range 
Mean 
?SD 
-tSEM 

mean values for circadian period estimates ob- 
served in other mammals and derived from 
mathematical modeling of data from human 
circadian studies (28, 40). These results suggest 
that the intrinsic period of the human circadian 

older 

0 young 

n 
Older 

24:02 1 :02 
24:07 -t :07 
24:03 + :03 
24:lO 1 :02 
24:25 -t :02 
24:28 -t :05 
24:19 -t :02 
24:09 -t :02 

subjects 
- 

24:Ol ? :02 
24:09 i :07 
24:lO -t :04 
24:25 -t :03 
24:30 -t :03 
24:20 -t :05 
24:13 ? :03 

" 
248  249  2 4 0 2 4 1  2 4 2 2 4 3  244  245  2 4 6  

lntrinsic circadian period (hours) 
1475 
1485 
1490 
14A6 
1507 
Range 
Mean 
1SD 
+SEM 

Fig. 2. Histogram of intrinsic circadian period 
(7) estimates derived f rom young and older 
subjects. lntrinsic circadian period estimates o f  
older subjects are indicated by solid bars, those 
of young subjects by open bars. Each subject's 
estimated intrinsic circadian period is reported 
as the  average of the estimated periods f rom 
his or her core body temperature, melatonin, 
and cortisol rhythms (see Table 1). 
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Interestingly, scheduling subjects to a 
non-24-hour rest-activity cycle alone is not 
in itself sufficient to assess the intrinsic cir-
cadian period in human subjects: The body 
temperature cycle of subjects scheduled to a 
27-hour rest-activity cycle, but not shielded 
from exposure to Earth's 24-hour light-dark 
cycle, remained entrained to the 24.0-hour 
day (44). However, lack of knowledge of the 
time of day may not be so critical when a 
non-24-hour schedule is behaviorally im­
posed. Estimates of the endogenous circadian 
period of the melatonin rhythm (24.27 hours, 
PCV 0.84%) derived from a field study of 
submariners living undersea (and hence 
shielded from bright outdoor but not artificial 
light) for 6 weeks while maintaining an 18-
hour naval duty schedule were only about 0.1 
hour longer than the results reported here 
from subjects studied in our controlled labo­
ratory environment (45), even though the 
submariners knew the time of day and only 
the work hours (but not the sleep or meal 
times) were scheduled to an 18-hour routine 
in that field study. 

The circadian period of blind subjects not 
entrained to the 24-hour day while they are 
living in society has been reported to average 
24.3 to 24.5 hours (26, 46), somewhat longer 
than we now report for sighted subjects. This 
apparent discrepancy may be due to (i) the 
influence of the nonuniform distribution of non-
photic synchronizers associated with the self-
selected rest-activity cycle of blind subjects [and 
of sighted subjects living in constant darkness 
(13)], which has been shown to affect circadian 
period estimates in other mammals living in 
constant darkness (25); (ii) the inclusion in the 
group average of only those blind subjects with 
longer than average circadian periods who were 
unable to maintain entrainment via weaker non-
photic synchronizers (25, 26), coupled with the 
classification of all blind subjects whose period 
estimates were indistinguishable from 24 hours 
as entrained, resulting in their exclusion from 
the group average; or (iii) aftereffects of entrain­
ment to the 24-hour day in the sighted subjects 
(47). The final possibility would suggest that 
prior entrainment to the 24-hour day in sighted 
people might shorten the circadian period ob­
served upon release from entrainment. 

In the present experiment, contrary to a prior 
assessment of the temperature rhythm under 
classical free-running conditions (8), we did not 
detect a significant difference in the intrinsic 
circadian period between the healthy young and 
older subjects studied; the average intrinsic pe­
riod (±SEM) in the young men was 24.18 ± 
0.04 hours, versus 24.18 ± 0.04 hours in the 
older men and women (P = 0.961) (Table 1), 
consistent with recent reports in both male and 
female Syrian hamsters studied throughout their 
life-span (48). However, with the number of 
subjects we studied and the observed variability 
in the intrinsic period, we only had the power 

(presumed a = 0.05; power = 0.90; standard 
deviation = 0.15 hours) to detect a difference in 
circadian period greater than 9 min between the 
young and older subjects in our study. Given 
our estimates of the distribution of circadian 
periods in young and older subjects seen in Fig. 
2, it remains possible that a much larger series 
of such studies might detect a small age-related 
difference in average circadian period. 

Despite comparable circadian periods, the 
older subjects in this study exhibited the char­
acteristically earlier entrained circadian phase 
and earlier morning awakening typically found 
in this age group relative to young subjects (23). 
Therefore, it is unlikely that the systematic age-
related advance in circadian phase and the time 
of spontaneous awakening can be attributed—at 
least in this healthy group—to an age-related 
shortening of circadian period (7-11). The re­
cent report of a similar estimate of circadian 
period in adolescents (49) further supports the 
conclusion that this pacemaker property remains 
stable with age. Putative mechanisms for age-
related changes in sleep-wake timing and con­
solidation include age-related changes in the 
sleep-homeostatic process and its interaction 
with the circadian and entrainment processes 
(23). However, these results do not preclude the 
possibility that abnormal circadian entrainment 
might be due to an abnormal circadian period in 
some older individuals, as has been reported 
(10). 

These results contribute to understanding 
circadian entrainment in both young and older 
people and have practical implications for un­
derstanding the pathophysiology of, and devel­
oping treatments for, circadian rhythm sleep 
disorders, including the dyssomnia of night 
shift work, transmeridian travel, both delayed 
and advanced sleep phase syndrome, and dis­
rupted sleep in older people. These data reveal 
that the human circadian pacemaker is as stable 
and precise in measuring time as that of other 
mammals, and they suggest that understanding 
of the molecular mechanisms regulating circa­
dian period in other species may well apply to 
humans (50). 
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Arabidopsis Galactolipid 
Biosynthesis and Lipid 

Trafficking Mediated by DGDl 
Peter Dormann,' llse Balkto,' Christoph Benningl* 

The photosynthetic apparatus in plant cells is associated with membranes of 
the thylakoids within the chloroplest and is embedded into a highly specialized 
lipid matrix. Diacylglycerol galactolipids are common in thylakoid membranes 
but. are excluded from all bthers. Isolation of the g e n e - ~ ~ ~ 7 ,  encoding a 
galactosyltransferase-like protein, now provides insights into assembly of the 
thylakoid lipid matrix and subcellular lipid trafficking in Arabidopsis thaliana. 

Of the four lipids associated with thylakoid 
membranes in plants only one is a phospholip- 
id, the ubiquitous phosphatidylglycerol. The 
other three are nonphosphorous diacylglycerol 
glycolipids with one or two galactose moieties 
or a sulfonic acid derivative of glucose attached 
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to diacylglycerol ( I ) .  The galactolipids consti- 
tute the bulk (close to 80%) of the thylakoid 
lipid matrix and, within green plant parts, 70 to 
80% of the lipids are associated with photosyn- 
thetic membranes. Most vegetables and fruits in 
human and animal diets are rich in galactolip- 
ids. Their breakdown products represent an im- 
portant dietary source of galactose and polyun- 
saturated fatty acids (2). 

Thylakoid membrane lipid biosynthesis in 
plants requires both carbohydrate and fatty 
acid metabolic pathways and is not restricted 
to chloroplasts, where galactolipids are found 
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