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Visible Cone-Beam Tomography 
With a Lensless lnterferometric 

To use the mutual intensity to obtain 
cone-beam projections, we assumed that 
source point r- was confined to a semiinfinite 
region is > 0k i th  Cartesian coordinates (xs, 
y., z.) and the coherence sampling points 
- 0  " - - -  
(for example, points 1 and 2)  were confined Camera to a planar aperture on Z, = 0 .  We chose the 
origin of the aperture at the midpoint between 

Daniel 1. Marks,'.' Ronald A. Stack,' David J. Brady,'-'* the two sampling points and defined Ax 
David C. Munson Jr.,',' Rachael B. Brady3 and Ay to be the distance between the sam- 

pling points along the x and y axes. The 
Digital processing of optical coherence functions can reconstruct three-dimen- Cartesian coordinates of the sampling points 
sional objects illuminated by incoherent light. I t  is shown that Fourier analysis are (Ax12, Ay12,O) and (-Ax12, -Ay/2,0). 
of the mutual intensity of the field produces projections that are mathemat- Finally, we made the paraxial approximation 
ically identical to the projections of x-ray cone-beam tomography. A lensless that zs >> Ax, Ay, x,, y, for all points in the 
interferometric camera that captures planes of mutual intensity data is de- source volume and in the correlation aper- 
scribed and used to reconstruct an incoherently illuminated visible object in ture. This implies that R, ,  - z, + [(Ax12 - 
three dimensions. x,)' + (Ay12 - y ~ ) 2 ] / 2 z y  and R,, - z, + 

[(Ax12 + xs)' + (Ay12 + ys)2]/2zs. Under this 
Lenses act as analog computers that transform plicity ( I ) .  If the field arises from a primary approximation, 
the incident field into an image of the field in a source in free space, its value at point 1 is a J(Ax, Ay )  = 
particular plane. With the continuing digital superposition of Huygens wavelets. This super- 
revolution, one may wonder whether this ma- position can be expressed as El = $E,(eJ"l~l 
log processing can be digitally enhanced. This R1,)d3r,, where j represents m, E, is the 
report describes digital imaging with an optical sour? field density, k = 2n/A, and position 
system consisting only of smooth planar surfac- vector r, is the variable of integration. The where A is the center wavelength of the 
es. As is often the case when a digital processor integral is over the source volume, and R,,  is source. Taking the inverse Fourier transform 
replaces an analog one, our motivation is to the distance from a source point to point 1. For 
improve the analog algorithm. The improve- a spatially incoherent source, (qE,.') = IsS(rs 
ment we obtain is infinite depth of focus, which - r,.), where I, is the source intensity density 
is equivalent to the geometrical optics assump- due to the field fluctuations E, and E,, at points 
tion that the field propagates in nondiffracting r ,  and r,., respectively, and S( ) is the Dirac 
rays. This assumption is satisfactory in medical delta function. After double integrations over r ,  
x-ray tomography because one is satisfied to and r,., the expectation reduces to J,,  = 
resolve features that are large compared with $Is(eJk(R~~-R~)/RISR2r)d3r,. Interferometric as- 
the wavelength of the illuminating radiation. tronomical imaging uses a far-field approxima- 
With visible imaging, one often wishes to re- tion of this integral in which the source space 
solve features as close to the wavelength scale reduces to 2D and the exponential t m  be- 
as possible, in which case diffraction cannot be comes a Fourier transform kernel (2, 3). The 
neglected. Here we show that visible ray pro- integral can be inverted to obtain the 3D source 

mographic algorithms to reconstruct three-di- context of statistical radiometry (9). 

jection data obtained from digital analysis of density with Fourier or modal methods (4-8). Fig. 2. Photograph of the test object. The max- 
interferometric data Can be combined with to- High depth of focus has been studied in the imal length of the object is 7.2 cm, the width is 

2.1 cm, and the height is 4.9 cm. 
mensional (3D)  objects. Our results show that 
neither point-by-point scanning, as in confocal ~ i ~ .  1. ~h~ rotational shear 
microscopy or coherence tomography, nor heu- interferometer (RSI) is a 
ristic analysis, as in computer vision, is neces- two-arm Michelson-style in- 
sary for 3D reconstruction and that diffraction- terferometer. A folding mir- 

beam 

limited 3D optical reconstruction is possible 'Or a pair of fddingmirror - 
from purely physical field analysis. planar mirrors joined at 

right angles terminates each I 

We obtained infinite depth of focus images arm. ~~~h folding mirror 
by digital analysis of the mutual intensity h c -  inverts the incident field 
tion. For quasi-monochromatic light, the mutu- aoms its axis. The RSI mea- 
al intensity between two points is J, ,  = (E,E;), sures planes of interfer- 
where ( ) is the statistical expected value. El ence data in parallel with L-1 

an electronic sensor array st- and E, are the complex field values at points 1 in the output aperture. The 
and 2, and we considered scalar fields for sim- folding mirrors are 

nally placed so that the op- 
tical path difference be- 
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of Eq. 1 with respect to Ax and Ay, we 
obtained 

(2) 
j(u,v) is a line integral through Z,/z; along a 
ray passing through the points (x, = Azp, ys 
= A Z , ~ ~ ,  z,). Values of J(u,v) for all allowed 
values of u and v correspond to integrals 
along a cone of rays diverging from the ver- 
tex point (xs = ys = zs = 0). In x-ray tomog- 
raphy, a cone of projection data is gathered by 
placing a planar sensor on the opposite side of 
the object volume from a point source. Equa- 
tion 2 shows that a mathematically equivalent 
cone of data for a self-luminous or ambiently 
illuminated visible object is obtained by mea- 
suring the mutual intensity on a plane centered 
on the equivalent (but now virtual) point source. 

Planes of mutual intensity data may be mea- 
sured in parallel with a rotational shear inter- 
ferometer (RSI) (Fig. 1) (1&13). We obtained 
experimental data using an RSI formed of a 
5-an aperture beam splitter and 5-an folding 
mirrors. One of the folding mirrors was mount- 
ed on a piezo-driven flexture stage to vary the 
optical path length. The only other elements in 
the optical system were a mechanical shutter at 
the RSI input, a 3-nm bandpass spectral filter 
centered on a wavelength of 633 nm at the 
output plane, and a 512 pixel by 512 pixel 
back-illuminated charge-coupled device (CCD) 
detector array. The spectral filter enforces the 
quasi-monochromatic assumption. For a quasi- 
monochromatic field, an RSI isolates the ampli- 
tude and phase of the mutual intensity by sam- 
pling the output plane intensity as a function of 
optical path difference. We measured tlie output 
for eight optical path delays between the two 

Fig. 3 (left). A pseudo- 
color volume render- 
ing of the 128 by 128 
by 128 reconstructed 
data volume. The haze 
around the reconstruct- 
ed data volume in Fig. 
3 is due to the spa- 
tial distribution of the 
patch response func- 
tion. Fig. 4 (right). 
The data volume with 
planes slicing the neck 
and body of the dino- 
saur. The brightness 
on the planes corre- 
sponds to the recon- 
structed intensity den- 
sity. The spatial distri- 
bution of the ~atch re- 

arms. The eight delays are evenly spaced over 
one wavelength of maximal relative delay. The 
discrete Fourier transform of the intensity image 
over these eight frames is J(Ax, Ay). 

Cone-beam tomography uses ray projections 
through vertices lying on a curve called the 
vertex path. Exact reconstruction of an object 
volume is possible if all planes through the 
object volume intersect the vertex path (14). 
Vertex paths that sample incomplete data are 
often used for implementation simplicity. We 
used an algorithm from Feldkamp et al. (15) in 
our experiments. This algorithm is based on a 
circular vertex path. Our test object (Fig. 2) was 
placed 1.61 m from the RSI sensor plane and 
illuminated by a white halogen lamp. We sam- 
pled a circular vertex path by rotating the object 
in front of the RSI. Planes of coherence data 
were recorded from 128 vertex points equally 
spaced in angle over one revolution. At each 
vertex point, we captured eight frames of 128 by 
128 intensity samples. These frames were de- 
modulated to estimate J(Ax, Ay), which was 
then Fourier transformed to obtain 128 planes of 
J(u,v) data. These planes were used in the cone- 
beam algorithm to reconstruct the 128 by 128 by 
128 data volume (Fig. 3). The reconstructed data 
cube is 10.6 cm on a side with a resolution of 
830 pm. The object size and resolution are 
determined by the range and sampling rate of 
(Ax, Ay). The sampling rate was the CCD pixel 
spacing (22 pm), and the range was limited by 
the RSI aperture (limited by the CCD array size 
to 0.63 cm) and by the angle between the fold 
axes (6.55') to 0.7 mm (16). 
Our derivation assumes that the object is 

translucent, but our experiment reconstructs an 
opaque object. Opacity has surprisingly little 
effect for objects without occluding surfaces. 
The tomographic reconstruction of a convex 
opaque object is a linear superposition of the 
reconstructions of the differential surface patch- 
es that make up the object. The opacity of each 
surface patch can be modeled as a window on 
the solid angle over which the patch radiates. 

The window function produces a characteristic 
patch response oriented according to the patch's 
surface normal (Fig. 4). For a convex object, the 
reconstruction is the convolution of the surface 
with the patch response function. In the noncon- 
vex case, surface patches may obscure each 
other, resulting in the reconstruction no longer 
being a unique function of the surface structure. 
The volume surrounding the feet of the object 
reported here is nonconvex, which leads to un- 
certainty in the reconstruction of this region 
(Fig. 5). 

Systems combining digital computation 
with a coherence sensor such as the RSI can 
achieve infinite depth of field. This property 
makes cone-beam tomography a flexible tool to 
svnthesize 3D structure from coherence infor- 
mation. Such physical optics techniques may 
ultimately benefit microscopy and machine vi- 
sion by providing 3D reconstructions of supe- 

Fig. 5. slice z = 84 of the data volume showing 
the legs, the tail going down, and the tail 
coming up. The four top white circles are cross 
sections of the legs and the bottom two circles 
are cross sections of the tail. The "fill" between 
the legs and around the tail is due to the 
angular windowing resulting from occlusion of 
some patches. 

sponse function is readily visible on the body slice. 
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lior resolution. Nonimaging sensors may pro- 
vide advantages over lens-based cameras, be- 
cause our knowledge of the environment should 
be limited by the information available from it 
and not our sensing or computational methods, 
analog or digital. 
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Chiral Magnetic Domain 
Structures in Ultrathin FePd 

Films 
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The magnetization profile of magnetically ordered patterns in ultrathin films 
was determined by circular dichroism in x-ray resonant magnetic scattering 
(CDXRMS). When this technique was applied to  single crystalline iron palladium 
alloy layers, magnetic flux closure domains were found whose thickness can 
constitute a large fraction (-25 percent) of the total film. 

X-ray reflections only occur when equivalent by magnetic x-ray scattering was suggested 
sites, in a crystal are occupied by identical by Bluine in 1985 (2) and has been success- 
atoms. If the scattering amplitudes of equiv- fully applied to magnetic lattice periodicities 
alent sites are not the same, then forbidden on an atomic scale (3 ) ,  we demonstrate here 
reflections can occur. These are pronounced 
in the case of resonant diffraction, where 
virtual excitations from core to valence states 
impose the symmetly properties of the elec- 
tronic and magnetic structure of the material 
(1). For instance, an antifei-romagnetic order- 
ing will give a magnetic superlattice with 
twice the size of the charge distribution. 
Here, we show how resonant nlagnetic scat- 
tering can be used to study complicated clo- 
sure do~nain patterns (Fig. 1). 

The domains display a left-right handed- 
ness known as chirality. It can be verified that 
the magnetization direction of each of the 

the case of magnetic domain structures. Us- 
ing x-rays with circular polarization, we can 
make an unambiguous distinction between 
magnetic profiles with T J + T and 
T T J domain patterns because only the 

former has a chiral structure. The observation 
of circular dichroism in the x-ray resonant 
magnetic scattering (CDXRhlS) signal, I-that 
is, its difference between left and light circular- 
ly polarized photons-allows us to recover the 
phase information that is generally lost in dif- 
fraction experiments. We demonstrate that this 
effect can be directly related to the magnetiza- 
tion profile in the film. 

bulk domains in Fig. 1 is related to the mag- To observe the magnetization directions, 
netization of the closure domains right (left) we can use the equivalent in the x-ray region 
above by a (counter)clockwise quarter-turn of either the Faraday rotation of linearly po- 
rotation in the yz plane. This extra syinmetly larized light or the Ken  effect of elliptically 
condition should col~espond to an additional polarized light. An increase in the sensitivity 
Bragg condition, leading to an otherwise for- 
bidden reflection. Although the possibility of 
measuring the long-period magnetic stiucture 
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the scattering amplitudes, f;,, weighted by a 
phase factor (4). Hanilon ef 01. ( 5 )  showed 
that the resonant electrical dipole scattering 
amplitude can be wr~t ten as 

where 6 and @' are the polarization vectors of 
the incident and scattered x-rays, respective- 
ly, and $I,, is the unit vector along the mag- 
netization direction in the sample. The com- 
plex factors F,, describe the atomic resonant 
excitation and decay processes, and they can 
be expanded in telms of multipole moinents 
of the ground state ( 6 ) .  The first term in Eq. 
1 is due to scattering from the Fe charge 
distribution, whereas the latter two terms are 
purely magnetlc scattering contributions. In 
the following we use the second tenn In Eq. 
1 to reconstruct the magnetization profile of 
the film. The difficulty w ~ t h  this is that usu- 
ally the absolute magnitude of the co~nplex 
factors F,> is not very well known and can 
only be obtained directly under certain con- 
ditions, such as for inultilayered samples (7, 
8).  However, the case of regular domain pat- 
terns results in an elegant way to separate the 
three scattering contributions in Eq. 1. The 
lateral domain periodicity leads to purely 
inagnetic superstructure scattering peaks lo- 
cated symmetrically around the specularly 
reflected x-ray beam. For structurally well- 
ordered filills x~1t11 smooth interfaces, the 
charge scattering tenn in Eq. 1 contr~butes 
only to the specular peak. The two inagnetic 
telmls are linear and quadratic in $I,, and 
cause magnetic peaks at wave vectors t~ and 
? 2 ~ ,  respectively (2pi/7 is the domain peri- 
odicity) (3-5). 

To assess the scattering from the individ- 
ual domains 111 Fig. 1B, we must detelnline 
the scattering cross sect~ons for the x-ray 
polarization components a and T that are 
perpendicular and parallel to the scattering 
plane, respectively (9) For the scattering ge- 
ometry used (Fig. 2A) and concentrating on 
the second term in Eq. 1, there are mainly two 
scattering paths producing T-polarized scat- 
tered light (4). For the bulk domains, RI,, is 
perpendicular to the film and a-polarized in- 
cident radiation experiences a Faraday rota- 

2166 25 JUNE 1999 VOL 284 SCIENCE www.sciencemag.org 




