
compensation by inactivating three hermaph- 

Dosage Compensation Proteins rodite-specific sation) genes S ~ C  (lo, (sex 11). and In dosage hermaphrodites, compen- 

Targeted to X Chromosomes by these genes activate dosage compensation 
and the genetic pathway for hermaphrodite 
sexual development (12-15). Both SDC-2 

a Determinant of and S D C ~  are necessary for localization of 
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dosage compensation to X chromo- 
somes (5, 7, 8, 16). XX animals that lack 
sdc-2 activity develop as males and die from 
elevated X chromosome expression caused 
by the failure to dosage compensate (14). In 
contrast, sdc-1 and sdc-3 XX mutants exhibit 
less severe phenotypes (13, I S ) .  Here we 

In many organisms, master control genes coordinately regulate sex-specific show that sdc-2 encodes the pivotal sex-spe- 
aspects of development. SDC-2 was shown to  induce hermaphrodite sexual cific factor that triggers the hermaphrodite 
differentiation and activate X chromosome dosage compensation in Caeno- program of development. 
rhabditis elegans. To control these distinct processes, SDC-2 acts as a strong 
gene-specific repressor and a weaker chromosome-wide repressor. To initiate Hermaphrodite-Specific Expression of 
hermaphrodite development, SDC-2 associates with the promoter of the male SDC-2 
sex-determining gene her-1 t o  repress its transcription. To activate dosage To elucidate the roles of sdc-2 in dosage 
compensation, SDC-2 triggers assembly of a specialized protein complex ex- compensation and sex determination, we 
clusively on hermaphrodite X chromosomes t o  reduce gene expression by half. cloned sdc-2 (1 7). We used germ line trans- 
SDC-2 can localize t o  X chromosomes without other components of the dosage formation assays to test cosmids (Fig. 1A) 
compensation complex, suggesting that SDC-2 targets dosage compensation and subclones (Fig. 1B) from the sdc-2 re- 
machinery t o  X chromosomes. gion for the ability to rescue sdc-2 XX mu- 

tants. The smallest genomic region to confer 
In diverse organisms, the choice of sexual tion of gene expression. All dosage compensa- rescue was a 12.6-kb DNA fragment (Fig. 
fate specifies not only the overt sexual tion components, including the mitotic and mei- 1 B) that corresponds to a single 9.5-kb tran- 
characteristics evident in adults but also the otic proteins functional in both sexes, must be script (Fig. ID). Detection of a 4.8-kb dele- 
amount of X chromosome gene expression directed exclusively to X chromosomes of XX tion associated with the sdc-2 allele y74 con- 
in somatic cells throughout development. X animals by a hermaphrodite-specific factor. firmed the identity of the transcript as sdc-2 
chromosome-wide expression is controlled The sex-specific gene that induces her- (18). The deletion removes the first 606 
by the essential process of dosage compen- maphrodite development, including dosage codons of the transcript and 2.1 kb of up- 
sation, which equalizes X chromosome ex- 
pression between females (XX) and males 
(XY or XO). In mammals, flies, and nem- 
atodes, specialized dosage compensation 
complexes are targeted exclusively to the X 
chromosomes of one sex to modulate tran- 
script levels (1, 2). Here we used Caeno- 
rhabditis elegans to understand how the 
dosage compensation machinery is targeted 
to X chromosomes of hermaphrodites (XX) 
and how dosage compensation is coordi- 
nately activated with the genetic pathway 
for sexual development. 

Although dosage compensation is a sex- 
specific process, the nematode dosage compen- 
sation complex contains both dosage compen- 
sation-specific proteins such as DPY-27 
(dumpy) (3-5) and chromatin-associated pro- 
teins that are also active in meiosis or mitosis 
such as DPY-26 (6, 7) and MIX-1 (mitosis and 
X) (8). These three proteins are similar to com- 
ponents of the frog 13s condensin complex that 
drives mitotic chromosome condensation in 
vitro (4, 8, 9), implying evolutionary recruit- 
ment of ancient mitotic proteins to the regula- 

compensation, had not been determined. In stream regulatory regions, consistent with 
males, the xol-I (XO lethal) gene initiates y74 eliminating gene function. sdc-2 has 19 
sexual development and represses dosage exons and is predicted to encode a highly 

A Fie. 1. Molecular analvsis of sdc- 

I 

Subclone 
pTY3B3 I-, 
pTY580 - 
pTY581 t 
pTY582 r 
pTY583 I 

sdc-2 
rescue - +' (616) 

+? (111) 

I +' (1 611 6) 
- - I - 5 (019) - "on) 

2 . 7 ~ )  Corresponding genetic and 
physical maps of the X chromo- 
some near sdc-2. Nearby genes 
(egl-75 and lin-74), DNA poly- 
morphism~ (nP8 and nP3), and 
overlapping cosmids (EEC4, 
HHG9, and C03B2) are shown. 
sdc-2 resides on C03B2; 'm.u. in- 
dicates map unit. (B) DNA trans- 
formation rescue experiments to 
define sdc-2. A partial restriction 
map of C03B2 is shown. C03B2 
subclones were tested for their 
ability to rescue sdc-Z(y46) par- 
tial loss-of-function mutants ($), 
sdc-Z(v74) null mutants (51, or 
both (f). +, rescue; -, faiiuie to 
rescue. The number of rescuing 
lines relative to total lines is in- 
dicated in parentheses. The min- 
imal rescuing region (12.6 kb) is 
bounded by dashed vertical lines. 
B, BgI II; X, Xba I; W, BsiW I; E, - 
~ s t ~ - l l ;  T, T t h l l l  I. (C) sdc-2 
gene structure. Horizontal line, 

Howard Hughes Medical Institute and Department of promoter; black boxes, exons; 
and University Of spaces, introns; open box, 3' untranslated region. Approximate location of the y74 deletion is 

Berkeley, CA 94720-3204, USA. shown. (D) Northern blot of poly(A)+ RNA from wild-type XX embryos probed with sdc-2 
*To whom correspondence should be addressed. E- sequences. sdc-2 encodes a highly charged 344-kD protein with a coiled-coil motif from amino 
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charged protein of 2962 amino acids with a 
coiled-coil motif (Fig. 1C). 

Irnmunofluorescence experiments with 
SDC-2-specific antibodies (Fig. 2) (19) showed 
the SDC-2 expression pattern to be distinct 
from that of all other dosage compensation 
proteins. Dosage compensation proteins such 
as DPY-27 are diffusely distributed through- 
out nuclei of very young embryos (<30 cells) 
(Fig. 2A) in both sexes and only later become 
specifically localized to X chromosomes of 
XX (Fig. 2, D and F) but not XO animals (4, 
7, 8). SDC-2 differs in three important ways. 
First, SDC-2 is not expressed in very young 
embryos (Fig. 2B). Its initial expression oc- 
curs around the 40-cell stage, a time that 
corresponds to the assembly of the dosage 
compensation machinery on X chromosomes 
(Fig. 2D) (4). Second, SDC-2 localizes to 
hermaphrodite X chromosomes from the on- 
set of its expression (Fig. 2, E and F). Third, 
SDC-2 is not expressed in wild-type XO 
embryos (Fig. 3, A to C), which indicates that 
SDC-2 is sex-specifically regulated. sdc-2 is 
repressed in males by the XO-specific gene 
xol-1: in xol-1 XO mutants, SDC-2 is ex- 
pressed and appears to be localized to X (Fig. 
3, D to F). The observations that SDC-2 is 
expressed exclusively in XX embryos, that its 
initial expression coincides with its own X 
localization, and that sdc-2 is required for X 
localization of other dosage compensation 
proteins (Fig. 2, G to I) (5, 7, 8) suggest that 
SDC-2 is the hermaphrodite-specific protein 
that triggers assembly of the dosage compen- 
sation machinery on X chromosomes. 

Dosage Compensation Activated by 
SDC-2 
If sdc-2 is the sex-specific switch that is both 
necessary and sufficient to activate dosage 
com~ensation. ecto~ic ex~ression of SDC-2 , L 

in males should initiate dosage compensa- 
tion, causing XO-specific lethality from un- 
derexpression of X chromosome-linked 
genes. SDC-2 was expressed in males from a 
chromosomally integrated transgene (yZs30) 
in which sdc-2 transcription was controlled 
by the constitutively active dpy-30 promoter 
(20, 21). Extensive XO-specific lethality re- 
sulted from the ectopic expression of sdc-2: 
81% of yZs30/+ XO progeny were dead (Ta- 
ble 1). The male survivors were small, slow 
mowing, and mating defective, further indi- - -. - 
cations of inappropriate X chromosome ex- 
pression. All mutant phenotypes, including 
lethality, were suppressed by mutations in 
hermaphrodite dosage compensation genes, 
either sdc-3 or dpy-27, which indicates that 
ectopic expression of sdc-2 activated the XX 
mode of dosage compensation in XO animals 
(Table 2). 

The incomplete male lethality caused by 
SDC-2 suggested that another dosage com- 
pensation protein was limiting in males. 

SDC-3 was a likely candidate, because it 
associates with hermaphrodite X chromo- 
somes and is required for X localization of 
other dosage compensation proteins. More- 
over, SDC-3 is only weakly expressed in 
XO embryos (16). Whereas overexpression 
of SDC-3 [from yZs3 (16)] caused only 2% 
male lethality, and expression of SDC-2 
caused 83% lethality, overexpression of 
both sdc-2 and sdc-3 caused 99% male 
lethality (Table l), which suggests that in 
XX animals SDC-3 assists SDC-2 in acti- 

Table 1. Ectopic expression of sdc-2 kills XO animals. 

vating dosage compensation. 
Direct demonstration that SDC-2 is suf- 

ficient to trigger assembly of the dosage 
compensation complex on X chromosomes 
was achieved by comparing the staining 
pattern of SDC-3 in both wild-type and 
SDC-2-expressing XO embryos. SDC-3 by 
itself does not associate with the male X 
chromosome: it is diffusely distributed in 
the nuclei of wild-type XO embryos (< 100 
cells) and in XO embryos engineered to 
overexpress SDC-3 (16). In contrast, 

sdc-2 induces XO lethal@* 

Sexual 
Maternal Paternal XO phenotype No. of No. of 

genotypet genotype lethality1 of XO 
xo XX 

survivors adults adults 

Wild type 81% 

sdc-3 helps sdc-2 kill males8 

Male Herma- No. of No. of No. of 
Arrays presenq phrodite adult 

Lethalit~ll lethalityll 
adult embryos herma- males phrodites (broods) 

None - - 701 (34%) 1144 (56%) 2051 (7) 
yls3O[dpy-3O::sdc-21 83% 6% 74 678 1287 (5) 
yls3[sdc-3(+)] 2% 1% 679 1124 2031 (8) 
yls3; yls3O[dpy-3O::sdc-21 99% 0.5% 6 1260 2261 (8) 

'Lethality ofyls30[dpy-30::sdc-2]/+ XO animals. tml-4(sc8) unc-76(e97 7) V; Lon-Z(e678) X;yls30 hermaphrodites 
were crossed to wild-type males; XO (Lon non-Rol) and XX (non-Lon non-Rol) cross progeny were counted. The unc-76 
marker was used to indicate the presence ofyls30. fcalculated as 100 - [(no. of adult male progeny)l(no. of adult 
hermaphrodite progeny) X 1001. $Lethality of animals that overexpress sdc-2, sdc-3, or both from homozygous 
integrated arrays. YStrains contained homozygous integrated arrays and a h i m a  mutation, which increases X 
chromosome nondisjunction, raising the proportion of male progeny to 34%; 10% of him-8 embryos are inviable. IIEm- 
bryos and adults were counted from multiple self-progeny broods. Percent male lethality was calculated as 100 - ([(no. 
of adult male progeny)l(no. of embryos X 0.34)] X 1001. All XO animals that overexpress sdc-3 are male. Percent 
hermaphrodite lethality was calculated as 100 - ([(no. of adult hermaphrodite progeny)l(no. of embryos x 0.56)] x 
100). 

Fig. 2. SDC-2 localizes 
to X chromosomes of 
XX embryos. False col- 
or confocal immuno- 
fluorescence images 
of wild-type (A to F) 
and sdc-2 mutant 
(G to I) XX embryos 
costained with anti- 
DPY-27 (green), anti- 
SDC-2 (red), and the 
DNA-intercalating dye 
4',6-diamidino-2-phe- 
nylindole (DAPI) (blue) 

1.- -- -, -- - - 
is not expressed in young XX embryos (<30 cells) (B), unlike the diffusely distributed DPY-27 
protein (A). (D to F) SDC-2 is first expressed in 40- to 50-cell embryos, exhibiting a punctate 
pattern (E) coincident (F) with that of the X chromosome-localized DPY-27 (D). (C to I) Specificity 
of anti-SDC-2 is shown by the lack of SDC-2 staining in an sdc-2 null embryo (>I00 cells) (H). 
DPY-27 cannot localize to X in sdc-2 mutants (C). 
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SDC-3 appears to be specifically localized 
to X chromosomes in SDC-2-expressing 
XO embryos (Fig. 3, G to  I). Thus, SDC-2 
is the hermaphrodite-specific factor that ac- 
tivates dosage compensation. 

Dosage Compensation Machinery 
Targeted to X Chromosomes by SDC-2 
Does SDC-2 require other dosage compensa- 
tion proteins for its association with X chro- 
mosomes? Evidence that SDC-2 can associ- 
ate with X independently of other dosage 
compensation components would distinguish 
SDC-2 from all known dosage compensation 
proteins and implicate it in the recognition of 
X. The dosage compensation proteins DPY- 
26, DPY-27, MIX-1, and SDC-3 fail to asso- 
ciate with X chromosomes in certain dosage 
compensation mutants (sdc-2, sdc-3, and dpy- 
30) and are not stably expressed in other 
mutants (dpy-26, dpy-27, and dpy-28) (5, 7, 
8, 16). In contrast, SDC-2 accumulates to 
significant quantities by midembryogenesis 
in dpy-26, dpy-27, dpy-28, dpy-30, and sdc-3 
mutants and exhibits a distinctly punctate 
nuclear pattern that is indistinguishable from 
the wild-type, X-localized pattern (Fig. 4) 
(22). Thus, despite a reduction in the amount 
of SDC-2 in dosage compensation mutants, 
SDC-2 appears to associate with X chromo- 
somes without other components of the dos- 
age compensation complex. This result im- 
plies that SDC-2 plays a central role in X 
chromosome recognition and confers chro- 
mosome specificity to dosage compensation. 

Hermaphrodite Sexual Development 
Induced by SDC-2 
In addition to its pivotal role in dosage com- 
pensation, sdc-2 plays a separate role in sex 
determination, promoting hermaphrodite sex- 
ual development in concert with sdc-1 and 
sdc-3 (13-15). Is sdc-2 the sex-specific trig- 
ger for hermaphrodite development as it is for 
dosage compensation? If so, XO animals that 
express sdc-2 should develop as hermaphro- 
dites. Because such XO animals are dead, 
dosage compensation mutations were used to 
suppress the lethality and permit assessment 
of sexual fate. About 31% of yZs30 XO ani- 
mals rescued by a dpy-27 null mutation were 
fertile hermaphrodites and 5% were intersex- 
ual (Table 2), which shows that sdc-2 can 
trigger hermaphrodite development in XO 
animals. In contrast, all yZs30 XO animals 
rescued by an sdc-3 null mutation were male, 
consistent with the role of sdc-3 in sex deter- 
mination (Table 2). Because sdc-2 feminized 
only 36% of XO animals, complete sexual 
transformation might require overexpression 
of sdc-2 and another sdc gene, just as over- 
expression of sdc-2 and sdc-3 are needed to 
fully activate dosage compensation (Table 1). 

Hermaphrodite sexual development requires 
tmnscriptional repression of the male autosomal 

gene her-l (hermaphrodite). Mutations in sdc- endogenous SDC-2 protein can associate with 
I, sdc-2, or the sex determination domain of her-l regulatory sequences in vivo. We created 
sdc-3 derepress her-1 transcription in XX ani- transgenic strains in which extrachromosomal 
mals and cause masculinization, which suggests DNA arrays included multiple copies of either 
that these genes collaborate to turn off her-1 her-1 regulatory regions (24) or control DNA. 
(15, 23). To assess whether SDC-2 is a direct Arrays also included lac operator repeats (lacO) 
molecular repressor of her-I, we asked whether (25) and a transgene encoding a Lac1::GFP 

Table 2. Ectopic expression of sdc-2 initiates hermaphrodite development in XO animals. 

Dosage compensation mutations rescue XO animals that express sdc-2* 
Dosage 

compensation m/m ml+ m/+ m/m ml+ 

mutation XO XO xx XO XO 

( 4  
viability? viability? PrOiZenY Progeny Progeny 

Many sdc-2-expressing XO animals rescued by dpy-27 mutations develop as hermaphrodites 

Maternal Paternal Extent of No. of XO No. of XO No. of XO 
genotype11 genotype11 males intersexestt herma- XO fem- 

inization** phroditesjt 

*Viabilities of yls30/+ XO animals with an sdc-3 or a dpy-27 mutation. tcalculated as [(no. of XO cross 
progeny)l(no. of ml+ XX cross progeny)] X 100. fro/-4 sdc-31y126)Iunc-76 V males were crossed to maternally 
rescued rob4 sdc-31y126) V; /on-2 X; yls30 hermaphrodites. The number of sdc-31sdc-3 XO (Lon Rol) or sdc-3/+ XO 
(Lon non-Rol) progeny was compared with the number of sdc-3/+ XX (non-Lon non-Rol) progeny, all of which are viable. 
All sdc-3lsdc-3 XX (Lon Rol) self progeny are inviable (3). All rescued XO animals were male. §dpy-27(y167)lunc- 
32(e189) 111 males were crossed to maternally rescued dpy-271y167) unc-32 111; /on-2 X; yls30 hermaphrodites. The 
number of dpy-271dpy-27 XO (Lon non-Unc) or dpy-27/+ XO (Lon Unc) progeny was compared with the number of 
dpy-27/+ XX (Unc non-Lon) progeny, which are viable (3). TShown are sexual phenotypes of dpy-27; yls30/+ XO 
animals. IlMaternally rescued dpy-27 unc-32 111; /on-2 X hermaphrodites were crossed to dpy-27 111; him-8 IV: unc-76 
V: yls30 males. Lon non-Unc (XO) cross progeny were scored for sexual phenotype. **Calculated as [(no. of XO 
hermaphrodites + no. of XO intersexes)l(total no. .of XO progeny)] X 100. tt Animals with both male and 
hermaphrodite characteristics. ffMost XO hermaphrodite progeny were self-fertile and slightly egg-laying 
defective. 

Fig. 3. SDC-2 protein is 
absent from wild-type XO 
embryos but assembles 
dosage compensation- 
components on X in SDC- 
2-expressing XO embry; 
0s. (A to F) Confocal im- 
ages of wild-type XO and 
XX (A to C) or xol- I 
7(y755) mutant XO (D to 
F) embryos stained with 
anti-SDC-2 (red). All em- 
bryos carried the inte- 
grated Pxol- 7::gfp report- 
er transgene (yls34). in 
which the mde-specific 
xol-7 promoter drives ex- 
pression of the gfp gene, - - 
which encodes the green 
fluorescence protein 
(GFP) (29). (A) Only XO 
animals produce nuclearly 
restricted GFP. (0 and C) 
The wild-type XO ernbryo 
does not express SDC~Z, 
but the XX embryo shows punctate staining that persists throughout development. (E and F) In the 
xol-l(y755) XO mutant, SDC-2 is expressed and localized to X. (C to I) Confocal images of an 
SDC-2-expressing XO ernbryo costained with anti-P-galadosidase (red) and anti-SDC-3 (green). 
The ernbryo carries an integrated X chromosome-linked array (yls29) with Pdpy-30::sdc-2 trans- 
genes and an integrated array (yls2) with the male-specific Pxol-7::lacZ reporter gene, which is 
similar toyls34 (77). SDC-3 is absent from wild-type XO ernbryos older than 100 cells (76), but in 
SDC-2-expressing XO embryos, SDC-3 accumulates and becomes localized to X. 
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fusion protein (26). Lac1::GFP binds to lac0 
sequences, which allows arrays to be detected 
by GFP autofluorescence (26, 27). Of 400 em- 
bryos from two strains with independent her-1 
arrays, >90% showed colocalization of SDC-2 
and GFP (Fig. 5, A to F). In contrast, of 200 
embryos with control arrays, none showed any 
colocalization (Fig. 5, G to L). SDC-2 also 
localized to X chromosomes in all experimental 
and control embryos (Fig. 5, A to L). Thus, 
SDC-2 associates with her-1 promoters in vivo. 

If her-1 is a functional target of SDC-2 in 
vivo, many copies of her-1 regulatory regions 
on arrays might titrate some SDC-2 from X, 

thereby impairing dosage compensation. In- 
deed, two different genetic assays, both sensi- 
tive indicators of X chromosome expression, 
showed that dosage compensation was compro- 
mised in animals with her-1 arrays. First, arrays 
containing her-1 promoter sequences enhanced 
the mutant phenotypes of XX animals with 
reduced sdc-3 activity. Without her-1 arrays, 
sdc-3(~126)/+ XX animals are wild type, and 
sdc-3lsdc-3 XX animals (from sdc-3l+ moth- 
ers) are l l l y  viable but exhibit weak dosage 
compensation phenotypes (3, 15). However, 
with her-lcontaining arrays, 29% of sdc-31+ 
XX animals showed dosage compensation-spe- 
cific defects and 40% of sdc-3lsdc-3 XX ani- 

mals were dead. Second, xol-1 XO animals, 
normally dead from inappropriately activated 
dosage compensation (lo), were rescued by 
her-1 arrays. Thus, association of SDC-2 with 
multiple her-1 regulatory regions has functional 
consequences for dosage compensation. These 
genetic assays, together with the her-1 array 
assays, indicate that SDC-2 acts directly to 
repress her-1 transcription, thus initiating her- 
maphrodite sexual development. 

sdc-3 is also required to repress her-1, but 
it does not trigger hermaphrodite develop- 
ment: XO animals engineered to overexpress 
SDC-3 develop as males (Table 1). To char- 
acterize the interaction between SDC-2 and 

Fig. 4. SDC-2 exhibits a pumztate staining pattem 
in dosage compensation mutants. Confocal imag- 
es of wild-type (A), sdc-3 (C), and dpy-26 (E) 
mutant embryos stained with anti-SDC-2 (red). 
(B, D, and F) Enlarged sections of mutant embryos 
costained with anti-SDC-2 (red) and DAPl (blue). 
Regions of overlap are fuchsia. SDC-2 protein 
amounts are reduced in the mutants but SDC-2 
appears to be X-localized. A similar SDC-2 pattem 
occurs in dpy-27, dpy-28, and dpy-30 mutants, 
and a wild-type pattem occurs in sdc-7 and dpy- 
27 mutants, which exhibit mild dosage compen- 
sation defects (3, 72, 22). dpy-30 participates in 
dosage compensation by activating sdc-3 (76). 
These results implicate SDC-2 in X chromosome 
recognition. Because SDC-2 staining was faint in 
the mutants, the brightness was enhanced during 
imaging to show the punctate pattern. 
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Fig. 5. SDC-2 associ- 
ates with her-7 pro- 
moter sequences. Con- -1 
focal images of wild- i type XX embryos car- , 
rying arrays (green), I 

with (A to  C) or with- 1 
out (G to I) her-7 pro- 
moters, stained with I 
anti-SDC-2 (red). All 
arraysabcontainlacO 
sequences and express 
a transgene encoding 
a lac repressoc:CFP fu- ' 
sion protein (LadSFP). 
Lacl::CFP binds to lacO , 
sequences within the 
DNA arrays, which al- ' 
lows them to  be de- , 
tected by green auto- 
fluorescence (26, 27). 
Colocalization (yellow) 
of CFP and SDC-2 in- I 
dicates that SDC-2 binds 
to her- 7 -containing ar- 
rays but not to  control 
arrays. Enlargement of 
single nuclei from * 
wild-* embryos bear- 
ing her-7 arrays (D to 
F) or control arrays (1 * 
to 1). Arrows indi- 
cate arrays tagged by 
Lacl::CFP, and arrow- 
heads mosomes. indicate (M X to  chro- 0) k I 
Confocal images of an S 
sdc-3(Tra) XX embryo 
bearing her- 7 promot- XX 4 &T 2c er arrays that bound 
SDC-2 in wild-type 
embryos. sdc-3(Tra) pre- 
vents SDC-2 from as- 
sociating with her- 7 
but not X. (P to  R) En- 
largement of a single 
nucleus from the sdc- 
3(Tra) strain. (S) Mod- 
el. sdc-2 encodes the 
sex-specific factor that 

Y.l. 

*--', 

2 ~ 1  *'- 0'- 
XO dl-" :. -. - i .  * - .  . .I ms a- 

-x 
induces hermaphrodite 
development in XX animals by repressing the male sex-determining gene her-7 and by triggering 
assembly of dosage compensation machinery on X, including proteins (DPY-26 and MIX-1) active in 
meiosis or mitosis. In XO embryos sdc-2 is repressed by the male-specific XOL-1 protein. xol-7 is the 
direct molecular target of the X chromosome counting mechanism that determines sex (27). Repression 
is indicated by -4. 
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SDC-3 in repressing her-I, we assessed the 
effect on SDC-2 of an sdc-3(Tra) mutation, 
which disrupts sex deterillination by dere- 
pressiilg her-I .  This mutation has no effect 
on dosage compensation (1.5). SDC-2 failed 
to associate with her-1 arrays in sdc-3(Tra) 
mutants but did associate with X chromo- 
somes (Fig. 5, M to R). Thus, sdc-3(Tra) 
mutations derepress he?.-I by preventing the 
association of SDC-2 with her-1 regulatory 
regions, which demonstrates the interdepen- 
dence of SDC-2 and SDC-3 and validates use 
of the assay to identify repressors of her-I .  
These results show that SDC-2 has different 
requireinents for its association with her-1 
and X, and they reveal the basis for the 
separation in sex determination and dosage 
coinpensation functions of sdc-3 (15 ,  16. 28). 

SDC-2 is the pivotal sex-specific factor that 
initiates the hermaphrodite program of sexual 
development and activates dosage compensa- 
tion (Fig. 5s). It participates directly in both 
processes through an association with chroma- 
tin, acting in one case as a strong gene-specific 
repressor and in the other as a weaker chromo- 
some-wide repressor. The distinct modes of 
SDC-2 repression are consistent mith 
SDC-2 being a transcriptional repressor that 
resembles no known transcription factors. 
SDC-2 triggers sexual development by inac- 
tivating the male sex-determining gene her-I, 
which is repressed at least 20-fold (23). In 
contrast, SDC-2 achieves dosage compensa- 
tion by reducing X chromosome expression 
twofold. The extent of repression conferred 
by SDC-2 is likely specified by interactions 
with its protein paitners. Repression of her-I 
requires interplay between SDC-2 and the sex 
determination domain of SDC-3. In contrast, 
modulation of X expression requires SDC-2 
to collaborate with the dosage compensation 
machinery and the dosage compensation-spe- 
cific domains of SDC-3, which includes a pair 
of zinc fingers ( 1  6). 

How can a robust transcriptional repressor 
also trigger assembly of the dosage compen- 
sation complex on X chromosomes? SDC-2 
may activate dosage compeilsation by first as- 
sociatiilg with X chromosomes~ perhaps with 
SDC-3, and then recruiting other dosage com- 
pensation components to X, including chro- 
mosome segregation proteins. Alternatively, 
SDC-2 may coordinate the assembly of dos- 
age compensation complexes off DNA; com- 
plete complexes would then recognize and 
associate with X chromosomes. In both cases, 
SDC-2 could confer chromosome specificity 
to dosage compensation by recognizing X 
chromosomes, as implied by the apparent 
association of SDC-2 with X in the absence 
of intact dosage compensation complexes. 
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