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The Fourth Dimension of Life: 
Fractal Geometry and 

ha1 e no ob\lous branched anatomy Here 1I.e 
present a more general model, based on the - 
geometry rather than hydrodynarn~cs of hier- 
arch~cal networlts, that does not require the - 
existence of such explicit structures and that 

Allometric Scaling of Organisms call account for the pervasive quarter-polver 
scaling in biolotrv. - -, 

Geoffrey B. West,ls2* James H. ~ r o w n , ' , ~  Brian J. Enquist2s3 We conjecture that organislns have been 
selected to maximize fitness by maxi~nizing 

Fractal-like networks effectively endow life with an additional fourth spatial 
dimension. This is the origin of quarter-power scaling that is so pervasive in 
biology. Organisms have evolved hierarchical branching networks that termi- 
nate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase 
molecules. Natural selection has tended to maximize both metabolic capacity, 
by maximizing the scaling of exchange surface areas, and internal efficiency, by 
minimizing the scaling of transport distances and times. These design principles 
are independent of detailed dynamics and explicit models and should apply to 
virtually all organisms. 

Evolutio~l by nah~ral selectioll is one of the example, dia~neters of tree tl-~mlis and aortas 
few universal principles in biology. It has scale as M3tVates of cellular metabolism and 
shaped the struct~~ral and functional design of heartbeat as blood circulation time 
organis~ns in t\vo important ways. First, it has and life span as and whole-organis~n 
tended to ~nax i~n ize  metabolic capacity, be- metabolic rate as 1!4"/< T11e question has beell 

nletabolic capacity, namely. the rate at which 
energy and material resources are taken up 
from the environment and allocated to some 
combination of survival and reproduction. 
This is equivalent to maximizing the scaling 
of whole-organism metabolic rate. B. It fol- 
lo\vs that B is lilnited by the geonletly and 
scaling behavior of the total effective surface 
area. CI ;  across which nutriellts and energy are 
exchanged \vith the extelnal or internal envi- 
ronment. Examples include the total leaf area 
of plants, the area of absorptive gut or capil- 
lary surface area of animals, and the total area 
of mitocl~ondrial inner membranes within 
cells. In general, therefore, B y- u. It is im- 

cause ~netabolis~n produces the energy and why these exponents are lnultiples of 114 portant to distinguish u from the relatively 
materials required to sustain and reproduce rather than 113 as expected on the basis of s1noot11 external surface, or "sltin," enclosing 
life; this has been achieved by increasing conventional Euclidea~l geometric scaling. lnally orgallis111s. \Ve further conjecture that 
surface areas lvl~ere resources are exchanged Recently, we presented a nlodel which natural selectioll has acted to lnaxilnize a 
wit11 the environment. Second, it has tended suggested that the explanatio~l could be found subject to various constraints while maintain- 
to n~axin~ize  internal efficiellcy by reducing in the fractal-like architecture of the hierar- ing a colnpact shape. This is equivalellt to 
distances over which materials are transport- chical branching vascular net\vorlts that dis- lnillirnizillg the time and resistance for deliv- 
ed and hence the time required for transport. tribute resources within organisms (2). The ery of resources by minimizing some charac- 
A ful-tl~er consequence of evolution is the in- lnodel accurately predicts scaling exponents teristic length or internal linear distance of 
credible diversity of body sizes, \v11ic11 range that have been nleasured for lnally s t r ~ ~ c t ~ r a l  the hierarchical network. 
over 21 orders of magnitude, fi-om 10P13 g and fullctional features of ma~nmalian and Broadly speaking, two sets of variables 
(microbes) to 10% (whales). A fundanlelltal plant vascular systems. It is not clear, how- can be used to describe the size and shape of 
problem, therefore, is ho\v exchange surfaces ever. how this model can account for the an organism: a conventiollal Euclidean set 
and transpol.t distances change, or scale, wit11 ubiquitous 314-power scaling of llletabolic describing the external surface, A, ellclosing 
body size. In particular, a longstalldillg question rate in diverse liinds of organisms with their the total volume. V; and a "biological" set 
has been \vhy nletabolic rate scales as the 3:'4- \vide variety of network designs. and espe- describing the i~lternal stl-uchlre, which in- 
power of body mass, k I  ( I ) .  cially in ~~nicellular algae and protists. which cludes the effective exchange area. 0, and the 

Biological scaling can be described by the 
eqL1atioll = '(1 lw''; is a Table 1. Examples o f  the biological network variables I ,  a, and v in plant, mammalian, and unicellular 

variable such as lnetabolic rate or life span, svstems, 
YO is a llo~lnalizatioll constant, and LJ is a 
scaling exponent ( I ) .  Whereas Yo varies with variable Plant Mammal  Unicellular 

the trait and type of organism, h cl~aracteris- 
tically takes on a lin~ited n ~ ~ l n b e r  of values, 1 Mean path length f rom root  Mean circulation Mean distance f rom cell 

all of \vhich are simple nlultiples of 114. For t o  leaf, o r  between leaves distance f rom heart t o  surface t o  mitochondria 
capillary, or between and between 
capillaries mitochondria 

a Total  area of leaves; area o f  ~ o t a i  area o f  capillaries; Actual cell surface area; 
'Theoretical Division, MS B285, Los Alamos National absorptive root  surface gut surface area t o ta l  surface area o f  
Laboratory, Los Alamos, NM 87545, USA, 2The Santa mitochondria1 inner 
Fe Institute, 1399 Hyde Park Road, Santa Fe, N M  
87501, USA. 3Department of Biology, University of membranes 

New Mexico, Albuquerque, NM 87131, USA. v Total  wood volume; t o ta l  Total  blood volume; Volume of  cytoplasm 
cell volume to ta l  tissue, or  cell, 

"To whom correspondence should be addressed. E- volume 
mail: gbw@lanl.gov 

www.sciencemag.org SCIENCE VOL 284 4 JUNE 1999 1677 



R E P O R T S  

Table 2. The scaling o f  length, area, and volume associated w i t h  biological networks compared t o  t he  
conventional Euclidean case. Allometric relations w i t h  M assume that  tissue density is constant. 

tal-like organization: 

Variable Conventional Euclidean Fractal biological 

\$here E ~ ,  is an "arb~trary" exponent. In this 
case 

Length 

Area 
Volume 

The crucial point here is that, because of 
the presence of I,,; a does not scale silnply total volume of biologically active material, v 

(Table 1). Although it is clearly a very diffi- 
cult technical problem to calculate a ,  there 

net\$orks of plants and animals and the com- 
phcated ultrast~ucture \$ithin cells We em- 
phasize that the network can be "\il-tual"; ~t 

as X2. The assumption of a power law does 
not require the existence of an idealized 
mathematical self-similar fractal, which 
has no "fundamental" length scale such as 

are solne general scaling properties that it 
must obey regardless of the detailed dynam- 

need not be a physical system of branching 
tubes, so long as it exhibits hierarchical path- 

ics. Before examining these, it is instructive 
to consider the simpler case of how the area 

ways of material flow. Second, although or- 
ganisms valy widely in size, these networks 

1,). Even though the actual physical network 
is not a pure fractal because it has terminal 

of skin, or external physical surface, of an 
organism or any Euclidean object, scales. 

terminate at invariant units of fixed size that 
can be characterized by a biological length 

units of fixed size and can be asymmetnc. it 
is still natural to use the fractal language. 

We first show how, and under what con- 
ditions, the classic 2'3-power Euclidean scal- 

scale, I,,. At the lvhole-organism level they 
include capillaries of mammals and leaves of 

We can therefore interpret the exponent in 
Eq. 6; ( 2  + E~!) = dei; as the fractal dimen- 
sion of n ( 4 ) .  As such, it satisfies 0 5 E~ 5 

1 .  The lower l i~ni t ,  E~ = 0, is the conven- 
ing law for A arises (3). In general, A is some 
complicated function of the various length 

plants. At the cellular and molecular levels, 
they include mitochondria and chloroplasts, 

scales, L , ;  L,, L,, . . .; lvhich parameterize 
size and shape: A = A(L, ,  L,; L,, . . .). On 
purely dimensional grounds this can be ex- 
pressed as A(L, ,  L,, L,; . . .) = L:@(L,!L,; 
L,IL,, . . .), where is a dimensionless func- 
tion of the dimensionless ratios L2:'L,, and so 

and the metabolic rate-limiting cytochro~ne ox- 
idase and R~lBisCo (ribulose- 1.5-bisphosphate 

tional Euclidean case discussed above; the 
upper limit, E ~ ,  = 1, represents the "maxi- 
mum fractality" of a volume-filling struc- 
ture in which the effective area scales like 

carboxylase-oxygenase) molecules within these 
organelles. We now modlfy the above scaling 
argument by incorporating these two important 
biological features. 

a conventional volume. 
Similarly, the biological volume, v; asso- 

on. Suppose that lve change the overall size 
by making a unifo~m scale transfomlation on 
all the lengths, L,: L, - L: = :U, (i = 1, 2,  
3; . . .), lvhere h is some arbitrary number. 
This similarity transfomlation preserves the 
shape of the object as its size varies. In this 
case @ clearly does not change, so A responds 
in the follolving manner: 

For a given type of organism the effective 
surface area is a function of the invariant 
length, lo, together with various independent 
length scales, I , ,  that pararneterize its fractal- 
like structure. It is important to distinguish 

ciated a i th  a,  can be expressed as v(l,, 1 , ;  I,, 
l,, , , .) = l~+( lO! l l ,  l2 / I l ,  l,!l,, , . .), where $ 
is a dimensionless fi~nctioll of the dirnension- 
less ratios l,lI,, and so on. This represents the 
volume of protoplasm or biologically active 

biological length scales, I,. which character- 
ize the interior networks of the organism, 

material in the organism. It is not necessarily 
identical to V ,  because most organisms con- 

from Euclidean ones, L,, which characterize 
its exterior shape. For example. in a nlamrnal 

tain empty spaces enclosed by the skin; how- 
eber, v x l/. By analogy wlth +, we assume 

one of the lz is the length of the aorta, whereas 
one of the L, is the overall body length; 

that, under a scale transfonnation, $ trans- 
f o ~ m s  as a power with an exponent E,,: $(& 
All ,  12!ll~ l , ! l l ~ .  . .) = A'~+(l,/l,, 12111, 1,; 
l , ,  . . .). Consequently, v scales as 

The Euclidean volume of the object, V = 

V(L, ,  L,, L,, . . .), can be treated similarly; on 
dimensional grounds, V = L?'P(L,!L,; L,! 
L , ,  . . .), where q is a dimensionless function 

similarly, in unicellular organisms one of the 
I ,  is the distance between mitochondria, 
lvhereas one of the L, is the cell radius. 
Working as before, the effective exchange 

of the dimensionless ratios L2!Ll, and so on. 
After the scale transformation, which leaves 
q unchanged, 
V -  Y - V( l iL , ,  liL?, :U3; . . .) 

area. u,  can be expressed as 
with 0 5 E,, 5 1 .  Combining Eqs. 6 and 7 
straightforwardly leads to (1 x v ( ~ - ' # ) / ( ~ - ' ~ ' .  

Now 1. can always be expressed as v = ul, 
where + is a d~mensionless function of the 
dimens~onless ratios 12/1,, and so on. Now, as 
the size of the organism changes, I ,  remains 
fixed. Consider. then. an arbitrary scale trans- 
formation on the network: 1, + 1: = Al, (i = 
1 ,  2, 3, . . .) keeping lo fixed. The analog of 
Eq. 1 reads 

where 1 is some length characteristic of the 
internal structure of the organism. We can 

From Eqs. 1 and 2; it is clear that A' lV '2  ' = 
AIV2 ,, that is, A x V 2  '; similarly; Li x V '  ,. 
Notice that these are consistent with writing 
V = AL, where L is some length that is a 
function of the L, and scales as L + L' = :U. 
Assuming a size-invariant uniform density, 
these then give the conventional Euclidean 
geometric scaling results L x LLi x 1Vf1/3 and A 
o: M 2  '. These should apply, for example, to 
the body length and skin area of vertebrates. 

The above argument ignores tlvo basic 
facts of biology. First, the metabolic process 
relies on the hierarchical fractal-like nature of 

therefore relate the scaling behaviour of v to 
that of a and I ,  a i th  1 expected to be propor- 
tional to one of the I,. It is instructive, how- 
ever, to consider the more general case and 
write 1 = 1(10, I , ,  1, ,...I = l ,u( l , ,~ l , ,  1,; 
I,, . . .); as was done a i th  a and v; a is a 
dimensionless function, analogous to c$ and 
$. This scales as 1 + 1' = hIC"I, where d, = 
1 + E, is the fractal dimension of 1; lvith 0 5 

E, 5 1. Consequently, v - v' = X3Ttc,tt,v 
which, when compared to Eq. 7, gives = 

n - n' = a(l,, X I , ,  XI,, X13. . . .) 

Because I ,  is fixed, the light-hand side is 
no longer simply proportional to A2 as in 
Eq. 1 .  Although 11.e do not know the X-de- 
pendence of +, we can parameterize it as a 
po\$er law reflecting the hierarchical frac- 

eo + E, ( 4 ) .  Assuming a uniform constant 
density. so that v o: 'Vf, then gives 

resource distribution networks. Examples in- 
clude the macroscopic branching vascular 

1678 4 JUNE 1999 VOL 284 SCIENCE www.sciencemag.org 
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Our conjecture that organisms have evolved 
so as to maximize the scaling of u implies 
that the exponent, b = (2 + E~ ):'(3 + E ~ !  + 
el); must be maximized. It is straiglltfor\vard 
to verify that this occurs when E ~ ,  = 1 and E, 

= 0, thereby giving b = 314. Metabolic rate 
should therefore scale as B y- 12.1 3" regardless 
of the details of the branching architecture (-7) 
and dynamics governing the metabolic pro- 
cess and distribution of resources. 

This has several important consequences. 
First, because u y- 12.f~'~, the number of in- 
variant units in the network also scales as 
1Vf3". Second, the result E, = 0; ahich gives 
d, = 1, i~nplies that internal distances associ- 
ated a i th  the network are not themselves 
fractal. This is consiste~lt with the constraint 
that times for supply of resources, and there- 
fore path lengths, should be minimized. 
Third, and perhaps most significant, is that E ~ ,  

= 1, which implies that the fractal dirnensio~l 
of n is (Ici = 3 rather than the canonical 
Euchdean balue of 2. Thus, the effect~r~e 
surface area is "maximally fractal" and the 
net~,orlt  structure is ~olume-filling. It is in 
this sense that organisms 11al.e exploited a 
fourth spatial dimension (6)  by el.ol~.ing hi- 
erarchical fiactal-like stl-uctures to max~mize 
resource acquisition and allocation More 
specifically, the area of the effective ex- 
change surface scales as if it were a volume: 
n -. a' = X3u, (rather than X2u), whereas 
characteristic internal lengtlls associated with 
the fiactal-like structure scale as I + I' = XI. 
Consequently, the biological volu~ne scales 
as 1) + 1,' = X41:, so that in addition to n y- 

1W3/"; we also have I x I! o: 1WIt4. 
These relationships sl~ould apply to all 

crganis~ns that have been selected to maxi- 
mize metabolic power under the constraint of 
lninilnizing intenla1 transport distances and 
thereby having a maximally compact three- 
dimensional body shape (Table 2). For organ- 
isms such as roundaorn~s and flataolms, 
ahich may be functionally one- or two-di- 
mensional, these geometric relationships can 
be appropriately modified. In D dimensions, 
for example, our argument straightforwardly 
generalizes to give u x B ;\/ID'iDT1' as in (2) 
and 1 y- I W ~ ' ~ ~ ~ ~ '  for the biological variables, 

and A y- lL1(Dpl! and L y- 12.f' for the 
Euclidean ones. These relationships are not 
expected to apply to a few organisms, such as 
filalnentous algae and fungi, that have been 
selected to maximize linear di~nensiolls so as 
to sparsely occupy a lnaxi~nal volume. 

The present derivation is Inore general 
than our original model in which it was as- 
sumed that resource distribution networks 
\$ere volume-filling and that energy dissipat- 
ed was mini~nized. Incorporating dynamics 
led to a complete description of the physics 
and geornetly of the networks that were 
sholvn to be fractal-like a i t h  l:'4-polver scal- 
ing (2, 7). Versions of this physically explicit 
model show ho\v the universal geometric der- 
ivation given here is realized in a variety of 
systems in different liinds of organisms. It is 
no acc~dent, therefore, that many biological 
networks exhibit area-preserving branching, 
even thougl~ different anatomical designs ex- 
ploit different hydrodynamic principles (2, 
7 )  Unlike the genetic code. ahich has 
evolved only once in the history of life, frac- 
tal-like distribution networlts that confer an 
additional effective fourth dimension 1lal.e 
originated Inally times. Examples include ex- 
tensive surface areas of leaves, gills, lungs. 
guts, kidneys. chloroplasts, and mitochon- 
dria, the whole-organism branching architec- 
tures of trees, sponges, hydrozoans. and cri- 
noids, and the treelike netaorlts of diverse 
respiratory and circulatory systems. It is not 
surprising, therefore, that even ~~llicellular or- 
ganisms exhibit quaster-power scaling, in- 
cluding the 3:'4-polver scaling law for meta- 
bolic rate. Although living things occupy a 
three-dimensional space. their intelnal phys- 
iology and anatomy operate as if they were 
four-dimensional. 

Quarter-power scaling laws are perhaps as 
universal and as un iq~~e ly  biological as the 
biochemical pathways of metabolism, the 
structure and function of the genetic code, 
and the process of natural selection. The vast 
majority of organislns exhibit scaling expo- 
nents very close to 314 for metabolic rate and 
to 114 for internal times and distances. These 
are the maximal and llli~linlal values; respec- 
tively, for the effective surface area and linear 

dimellsions for a volume-filling fractal-lilte 
network. On the one hand; this is testimony to 
the power of llah~ral selection, which has 
exploited variations on this fractal theme to 
produce the incredible variety of biological 
folnl and function. On the other hand, it is 
testi~llo~ly to the severe geometric and phys- 
ical constraillts on metabolic processes, 
\vhich have dictated that all of these organ- 
isms obey a common set of quarter-power 
scaling lalvs. Fractal geometry has literally 
given life an added dinlension 
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