
I iterative PKS and a ~u ta t ive  ellovl reduc- 1. Am. Chem. Soc. 105, 3334 (1983); Y. Yoshizawa, gene interacts with a condensation domain in the 

tase. This system appears to be all that is 
necessary for the 35 separate reactions [in- 
cluding a possible Diels-Alder cyclization re- 
action. heretofore precedented only once in 
nature (21)] postulated to be necessary for the 
biosynthesis of dihydromollacolin L fiom 
acetyl-CoA, rnalonyl-CoA, NADPH (the re- 
duced folm of nicotinarnide adenine dinucle- 
otide phosphate), and SAM. The LNKSI 
LovC system exhibits a remarkable discrim- 
inatoly ability whose catalytic mechanism 
must be veiy different froln the linear pro- 
gramming found in bacterial lnodular type I 
PKS systems (4, 5 ) .  Lovastatin biosynthesis 
is completed by the addition of the 2-meth- 
ylbutyiyl side chain to rnonacolin J by a 
specific transesterase encoded by 1o1,D. 

Bacterial type I PKSs have been manipu- 
lated genetically to produce novel com- 
pounds that are difficult to make by tradition- 
a1 chemical methods (4-6).  Although much 
less is h1o11711 about the molecular recognition 
powers of the PKSs that make reduced fullgal 
metabolites like lovastatin: the methods of 
cornbinatorial biosynthesis may also be ap- 
plicable to these enzymes. Elimination or 
inactivation and addition of domains to such 
PKSs will determine whether this approach 
can yield useful inforlnation on the substrate 
discriminatoiy properties of the LNKSiLovC 
co~nplex in particular and will allow. us to 
determine how it can be manipulated to pro- 
duce novel con~pounds. Manipulation of loi,F 
to produce compounds with different side 
chains is much easier to envisage. The dele- 
tion of activities in this gene or perhaps ad- 
dition of further modules could allow the 
production of various lovastatin analogs in a 
predictive manner. 
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Regulator of Cell Surface 
Sialylation 

Oliver T. Keppler,'*+ Stephan Hinderli~h,~* Josmar Langner,' 
Reinhard Schwartz-Albiez,' Werner R e ~ t t e r , ~  Michael Pawlitalf: 

Modification of cell surface molecules with sialic acid is crucial for their function 
in many biological processes, including cell adhesion and signal transduction. 
Uridine diphosphate-N-acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epim- 
erase) is an enzyme that catalyzes an early, rate-limiting step in the sialic acid 
biosynthetic pathway. UDP-GlcNAc 2-epimerase was found to be a major 
determinant of cell surface sialylation in human hematopoietic cell lines and 
a critical regulator of the function of specific cell surface adhesion molecules. 

In eukalyotic cells, glycoproteins and glyco- 
lipids expressed at the cell surface can be 
modified to varying degrees by the addi- 
tion of sialic acids [.IT-acetylneurarninic acid 
(NeuAc) or other N- and 0-substituted neura- 
minic acids]. Because of their widespread 
distribution. structural versatility. and periph- 
eral position on oligosaccharide chains of 
glycoconjugates, sialic acid residues are well 
suited as molecular determinants of specific 
biological processes. For example, they are 
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involved in cell-cell interactions, T and B cell 
activation, and hematopoietic cell differenti- 
ation (1-4). Differential sialylation, that is, 
quantitative or linkage-specific differences in 
sialylation, of cell surface molecules is also 
implicated in the turnorigenicity and meta- 
static behavior of malignant cells (5). 

Sialyltransferases, which reside in the 
Golgi apparatus, add cytidine monophos- 
phate (CMPj-activated sialic acid residues to 
specific t e ~ ~ n i n a l  nonreducing positions on 
oligosaccharide chains of proteins and lipids 
(6). The differential expression of sialyltrans- 
ferases explains some (4: 7) but not all ex- 
amples of differential sialylation (8, 9). In 
subclones of the human B lymphoma cell line 
BJA-B, differential sialylation accounts for a 
reduction of up to 73% in the incorporation of 
both a - 2 , 6  and a-2,3-linked sialic acid res- 
idues into membrane glycoconjugates, even 
though the activity of the P-galactoside 
a-2.6-sialyltransferase. ST6Gal 1: is not lim- 
ited (9). Also: the different degrees of cell 
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surface sialylation that have been described 
in variants of the HL-60 human inyeloid leu- 
kemia cell line (10, 11) cannot be attributed 
to differences in the expression of speciflc 
glycosyltransferases (11). We investigated 
whether differential sialylation could be a 
result of limitations in available intracellular 
CMP-NeuAc, a substrate of all sialyltrans- 
ferases (Fig. 1A). 

To determine if sialic acid biosynthesis 
alters sialoglycan expression: we used two 
hyposialylated subclones of the BJA-B cell 
line, K20 and K6. in a metabolic coinplemen- 
tation assay. On the basis of the known sialic 
acid biosynthesis pathway (Fig. 1A). cells 
were grown in the presence of different sialic 
acid precursors, and the overall sialylation of 
cell surface glycoconjugates, as well as the 
a-2,6-sialylation of specific B cell differenti- 
ation antigens, was analyzed (12, 13). Repre- 
sentative flolr~ cytometry results for subclone 
K20 are shown (Fig. 1: B to D). Cultivation 
of cells in either Y-acetyl-D-rnannosarnine 
(ManNAc) or D-mannosamine (ManN) re- 
sulted in an increase in binding of sialic 
acid-specific Limns f7n1,lo agglutinin (LFA) 
(14) (Fig. 1B) and also induced an up-regu- 
lation in the expression of three a-2,6-sia- 
lyllactosainines tested, CDw75 (Fig. 1, C and 
D): CDw.76: and EBU-65 (1.5). Binding of 

LFA or of inonocloilal antibodies (mAbs) to 
CDw75 and CDw76 was reduced ~vhen cells 
grown in ManNAc were treated with IVibiio 
cholei.ne sialidase (12, 15 ) .  Supplen~entation 
of the inediuin with :b--acetyl-D-glucosan~ine 
(GlcNAc), D-glucosamine (GlcN). D-man- 
nose (Man), or D-glucose (Glc) (12), which 
all enter the sialic acid biosynthetic pathway 
upstreain of ManNAc (Fig. 1A). had no effect 
on sialoglycan expression (Fig. 1. B and C) .  
Sialoglycan expression in K20 cells was de- 
pendent on the concentration of ManN 
present (16) and reached that of untreated 
K88 cells, which are highly sialylated (Fig. 
1D and Table 1). The sialic acid content of 
ManNAc-treated K20 cells also reached that 
of K88 cells (13, 15) .  

Sialyl-Lewis' (sLeX. C D l j s )  is an impor- 
tant sialylated component of carbohydrate li- 
gands that bind to E- and P-selectin rnole- 
cules. These ligands are expressed by leuko- 
cytes and are involved in leukocyte recruit- 
ment of selectin-expressing endothelial cells 
in response to injuiy or inflarnination (1 7). 
Enhanced expression of sLe' also corselates 
with metastatic progression of epithelial car- 
cinoinas (18). HL60-I, an HL-60 cell line 
variant, expressed inostly ilonsialylated 
Lelvis' (Le", CD15) and less sLe' on the cell 
surface, in addition to an overall hyposialy- 

Fig. 1. Metabolic com- 
plementation studies 
indicate a control point 
in sialic acid biosyn- 
thesis. (A) Schematic 
representation of sialic 
acid metabolism. (B 
t o  D) Hyposialylated 
BJA-B cells were culti- 
vated in  the absence 
(control) or presence 
of various sugars (5 
mM). MFI, mean flour- 
escence intensity; FOI, 
factor of increase of 
MFI values relative t o  
controls. (B) Binding of 
LFA t o  detect sialic 
acid residues irrespec- 
tive of their linkage 
(14) ( N  = 3) after 
a 48-hour incubation 
wi th the indicated sug- 
ars. (C) Binding of mAb 
HH2 t o  detect CDw75 
sialoglycan expression 
after a 48-hour incu- 
bation wi th the indi- 
cated sugars ( N  = 3) 
(12). (D) Binding of 
mAb HH2 t o  detect 
CDw75 ex~ression on 
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lation of glycoconjugates (Fig. 2A and be- 
lolr~) (13. 19). In contrast, HL60-11, another 
HL-60 cell line variant, expressed greater 
than 100 times more sLex and was highly 
sialylated (Fig. 1E and below) (10). Both 
variant cell lines expressed equal amounts of 
the myelo-monocyte inarker CD14 and major 
histocompatibility complex (MHC) class I 
(Fig. 1E). Growth of hyposialylated HL60-I 
cells in medium supplemented with ManNAc 

Table 1. UDP-ClcNAc 2-epimerase activity and 
amount of membrane glycoconjugate-bound sialic 
acid (13) in BJA-B subclones and stable transfec- 
tants (34). Values shown are arithmetic means -t 
SD. 

UDP-ClcNAc NeuAc 
Cells (N) 2-epimerase 

(kU/mg of 
(nmol/mg of 

protein) protein) 

BJA-B (4) 
K43 (4) 
K88 (6) 
K6 (4) 
K2O (6) 
K2ONeol (3) 
K2Oa2,6ST (3) 
K2OrEpil (5) 
K2OrEpi2 (5) 
K88rEpi (4) 

B 

D 

CT 

$ 1  

1 1 0  100 
Incubation time (hours) 

I! Relative fluorescence 

BJA-B ~ 2 0 '  cells, culti- 
vated in the presence (m) or absence (El) of ManN for indicated times and those obtained wi th mAb 2H5 were also obtained wi th mAb CSLEXI (sLeX) 
on untreated, highly sialylated BJA-B K88 cells (9) (0) ( N  = 2). (E) Overlay (15). (F) HL60-I cells, cultivated in the absence (Control) or presence of the 
of FACScan histograms of HL60-I (dotted lines) and HL60-ll (solid lines) (19). indicated sugars (5 mM) for 70 t o  74 hours and treated wi th Vibrio cholerae 
(Top) Negative control (Neg.), CD14, and MHC class I (Class I) molecules sialidase where indicated, were analyzed for sialic acid content by LFA 
were determined wi th mAbs HD20, M5E2 and W6132, respectively (12). binding ( N  = 4) and the expression of sLex (mAb 2H5) ( N  = 5) and CD65s 
(Bottom) mAbs 2H5 and HI98 t o  sLex and Lex, respectively. Similar results t o  (mAb VIM-2) ( N  = 3). 

www.sciencemag.org SCIENCE VOL 284 21 MAY 1999 1373 



R E P O R T S  
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Fig. 2. Sialylation of membrane glycoconju- A 
gates in hematopoietic cell lines depends on lo001 

D UDP-GlcNAc Zepimense 
@Ulmg pmtein) 

UDP-ClcNAc 2-epimerase activity. (A) B cell 
lines: BJA-B (A), BJA-B K88 (B), BJA-B K43 (C), f 
BjA-B K20 (D), BJA-B K6 (E), Daudi (F), Namal- P loo 

wa (C). BL-60 (H), Raji (I), ]OK-I O). IARC-277 8 2 
(K), IM-9 (L), and Nalm-6 (M). T cell lines: Jurkat 2 
(N), Cem-C7 (O), and Molt-4 (P). Myeloid cell $2 10 

1 10 100 
Sialic acid (nmoVmg protein) 
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Fig. 3. UDP-ClcNAc 2-epimerase activity regulates sialic acid-dependent functions in hematopoi- 
etic cell lines. BJA-B subclones and transfedants were analyzed by flow cytometry, and arithmetic 
means of MFI are given (N > 2). (A) Binding of ledins W A ,  SBA, PNA, and concanavalin A (ConA) 
and (B) the expression of a-2,6-sialylated B cell differentiation antigens CDw75, CDw76, and 
EBU-65 (12). (C) Binding of CD22-lg to cells (40). (D) Sialic acid content (top) (73) and sLex 
expression (bottom) (72) in hyposialylated HL60-I cells, their stable rEpi transfectants (rEpil and 
rEpi2), control neomycin-resistant transfedants (Neol and NeoZ), and highly sialylated HL60-ll 
cells. The UDP-ClcNAc 2-epimerase activity (73) is indicated above the top panel. (E) Correlation 
of sialic acid content and P-selectin-lg binding (47) in HL60-I and -11 cells (W), HL60-I transfedants 
(n), and HL60-I cells (@) grown in 1 mM, 3.3 mM, 10 mM, or 30 mM ManNAc as indicated for 3 
days. 

PBGD 
?I 

- 7  . = 

1 

lines: HL60-I (Q), HL60-ll (R), U937 (S), and :? 
KC-1 (T) (24, 25). Values are the arithmetic 25 
means of four determinations. (B and C) De- C 1 

tection of human (huEpi) and rat (rEpi) UDP- 8 
ClcNAc 2-epimerase mRNA by RT-PCR in HL- ' 

60 variant cell lines and transfectants and 0.1 

GAPDH 4 

E4 q 
L 

or ManN also enhanced overall cell surface 
sialylation and the sialylation of two a-2,3- 
sialoglycans, sLex and CD65s (Fig. 1F and 
below) (20). 

On the basis of the known sialic acid 
biosynthetic pathway (Fig. lA), these meta- 
bolic complementation data indicate that the 
epimerization of uridine diphosphate-N- 
acetylglucosamine (UDP-GlcNAc) to Man- 
NAc by UDP-GlcNAc 2-epimerase (21) 
might be a rate-limiting step in the generation 
of CMP-NeuAc in hyposialylated BJA-B and 
HL-60 cells. This enzyme has been proposed 
as a regulator of sialylation in various prima- 
ry tissues (22). The activity of UDP-GlcNAc 
2-epimerase correlated with CMP-NeuAc 
levels (23) as well as with sialic acid content 
in BJA-B and HL-60 cells (13) (Fig. 2A, 
Table 1, and below). In all hematopoietic cell 
lines tested, UDP-GlcNAc 2-epimerase activ- 
ity and sialic acid content were concordant 
(Fig. 2A) (24, 25). 

Cultivation of HL60-I and K20 cells in 
serum-free medium resulted in a loss of gly- 
coconjugate sialylation (<2 nmol of NeuAc 
per milligram of protein) (26). In contrast, 
the sialylation of glycoconjugates in HMO-I1 
and K88 cells, which display high UDP- 
GlcNAc 2-epimerase activity, was unaffected 
under these conditions. Thus, the residual 
sialylation in UDP-GlcNAc Zepimerasede- 
ficient cells likely occurs through a salvage 

BJA-B subclones (31). Species-specific restric- I 10 100 

tion sites were used to  further characterize the Sialic acid (nmoVmg protein) 

RT-PCR cDNA product: Cla I (C) for human, 
Xmn I (X) for rat, and uncut (u). Human housekeeping enzyme PBCD served as a positive control. (D) 
Northern blot analysis of rat UDP-ClcNAc 2-epimerase (rEpi) expression in stable transfectants of 
BJA-B subclones. Poly(A)+-selected mRNA from rat Liver; BJA-B subclones K43, K88, K20, and K6; 
stable transfectants of K88 (K88rEpi) or K2O (K2OrEpil and K2OrEpi2); and neomycin-resistant K2O 
cells (K2ONeol) were hybridized with [a-32P]-labeled rat UDP-ClcNAc-epimerase cDNA (top) or with 
[a-32P]-labeled glyceraldehyde-3-phosphate dehydrogenase (CAPDH) probes (37) (bottom) (9). 
Additional sequences from the expression plasmid increase the size of the recombinant rEpi 
transcript in BJA-B transfectants as compared with the endogenous transcript in rat liver. 

pathway that recruits sialic acid from serum 
sialoglycoconjugates in the media (27) and 
not through an alternative pathway of de 
novo sialic acid biosynthesis (28). These re- 
sults confirm that the activity of the UDP- 
GlcNAc 2-epimerase is rate-limiting to the 
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biosynthesis of sialic acid and show that this 
enzyme is required for normal sialylation in 
hematopoietic cells. 

Different tissues from rodents display 
considerable variations in steady-state levels 
of UDP-GlcNAc 2-epimerase transcripts (29, 
30). In BJA-B and HL-60 cells, epimerase 
activity correlated with transcript levels as 
determined by reverse transcriptase-poly­
merase chain reaction (RT-PCR) (Fig. 2, B 
and C) (31-33). We established HL60-I and 
BJA-B transfectants that constitutively ex­
press the rat homolog of this enzyme (rEpi) 
(31, 34). Epimerase mRNA in transfectants 
was detected by RT-PCR or by Northern 
(RNA) blot analysis (Fig. 2, B to D). In the 
BJA-B transfectant K20rEpi, an increase in 
UDP-GlcNAc 2-epimerase activity was ac­
companied by an increase in the sialic acid 
content (Table 1). Enzyme activity and sialy­
lation were comparable to those of highly 
sialylated BJA-B cells. Lectin-binding analy­
ses with fluorochrome-coupled Vicia villosa 
(VVA), soybean (SBA), and peanut (PNA) 
agglutinin, which specifically bind to the in­
dicated saccharide residues (12), confirmed 
an increased masking of these penultimate 
saccharides by sialic acid in K20rEpil (Fig. 
3A) and K20rEpi2 cells (15). K20rEpil cells 
also expressed more of the a-2,6-sialyllac-
tosamines CDw75, CDw76, and EBU-65 on 
the cell surface than did hyposialylated K20 
andK20Neol cells (Fig. 3B). Overexpression 
of ST6Gal I sialyltransferase (9) did not af­
fect expression of these antigens (Fig. 3B). 

CD22 is a B lymphocyte-specific adhesion 
and signaling molecule that is involved in the 
regulation of B cell activation. It binds to a-2,6-
sialyllactosamines (35-37), which are the prod­
ucts of the ST6Gal I. CD22 interacts with 
CDw75 (38) and possibly with other a-2,6-
linked B cell antigens to mediate B cell-B cell 
interactions (37, 39). We investigated the bind­
ing of CD22 to BJA-B subclones and transfec­
tants with a soluble fusion protein made up of 
the extracellular domains of CD22 and the Fc 
portion of human immunoglobulin Gl (IgGl) 
(CD22-Ig) (40). Binding of CD22-Ig to BJA-B 
cells correlated with UDP-GlcNAc 2-epimerase 
activity (Fig. 3C and Table 1). Compared with 
K20 or K20Neol cells, the parental BJA-B and 
the highly sialylated K88, K20rEpil, and 
K88rEpi cells all bound greater amounts of 
CD22-Ig (Fig. 3C). Overexpression of ST6Gal 
I in epimerase-negative cells (K20a-2,6ST) did 
not affect CD22-Ig binding. An increase in the 
sialylation of several specific surface molecules 
in K88rEpi cells (Fig. 3B) raised the possibility 
of a hierarchy in glycoconjugate sialylation, 
with some acceptor sites being sialylated only 
under conditions of sialic acid excess. Although 
the activity of ST6Gal I is a prerequisite for 
generating a-2,6-sialylated B cell differentia­
tion antigens in this B cell line (35-37), the 
activity of UDP-GlcNAc 2-epimerase is the 

only limiting factor. 
In spite of a marginal increase in UDP-

GlcNAc 2-epimerase activity (0.7 ± 0.2 |JLU/ 
mg) (Fig. 3D), HL60-I rEpi transfectants 
showed an increase in sialic acid and sLex 

expression by 2 and 20 times, respectively, 
compared with parental cells and HL60-I Neo 
transfectants (Fig. 3D). When hyposialylation 
was either metabolically (ManNAc) or genet­
ically (rEpi transfection) complemented in 
the HL60-I variant, binding of a P-selectin-Ig 
chimeric molecule (41) to cells also in­
creased. This con-elated with an increase in 
sialic acid content and sLex surface expres­
sion (Fig. 3, D and E). The increased P-
selectin-Ig binding was sialidase sensitive 
(12, 15). Thus, subtle changes in UDP-Glc­
NAc 2-epimerase activity affected sLex ex­
pression and P-selectin-Ig binding in this my­
eloid cell line. 

Our data show that UDP-GlcNAc 2-epim­
erase, which catalyzes a rate-limiting step in 
the biosynthesis of sialic acids, is an impor­
tant regulator of cell surface glycoconjugate 
sialylation in hematopoietic cell lines. Activ­
ity of the enzyme can be controlled at tran­
scription and can affect the sialylation and 
function of specific cell surface molecules 
expressed on B cells and myeloid cells. Fur­
ther insight into the regulation of sialylation 
by UDP-GlcNAc 2-epimerase in normal hu­
man cells and primary tumors may contribute 
to the understanding of physiological as well 
as pathological sialic acid-dependent pro­
cesses in adhesion, signaling, differentiation, 
and metastasis. 
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