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Recent long-term increases in sea surface and 
upper water column temperatures in the east­
ern North Pacific have led to shoaling of the 
mixed layer, resulting in a reduced nutrient 
supply to the euphoric zone (1). Concomi­
tantly, there has been a decline in primary 
productivity accompanied by decreases in 
zooplankton and seabird abundances as well 
as kelp production (1-4). Deep-sea commu­
nities rely on food produced in the euphotic 
zone, and a long-term reduction in surface 
productivity could severely impact the supply 
of food to the deep ocean. 

Efforts to examine the coupling between 
pelagic food sources and the utilization of 
this food by deep-sea communities have been 
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hampered by a number of problems. These 
include qualitative and quantitative diversity 
in food sources, the diffuse nature of the 
mechanisms by which this food is transported 
from its source to the abyssal ocean, and 
variability in metabolic demands by deep-sea 
communities on a variety of temporal and 
spatial scales. Short-term studies of trophic 
coupling between a pelagic (water column) 
food supply and benthic (surface sediment) 
communities in the deep ocean have been 
inconclusive. These studies have revealed 
both acceptable agreement and unexplained 
discrepancies, depending on geographic loca­
tion and time of year (5-7). These inconsis­
tencies have prompted long-term studies of 
temporal variation in the flux of sinking par­
ticulate organic carbon (POC), as a measure 
of food supply reaching the sea floor from the 
overlying water column, and sediment com­
munity oxygen consumption (SCOC), as an 
estimate of metabolic demand for organic 
carbon (8, 9). 

A 7-year study was conducted to examine 

Long-Term Discrepancy 
Between Food Supply and 

Demand in the Deep Eastern 
North Pacific 
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A 7-year study of food supply [sinking particulate organic carbon (POC)] and 
food demand [sediment community oxygen consumption (SCOC)] in the 
abyssal eastern North Pacific revealed a long-term deficit in food supply. The 
POGSCOC ratio decreased by 52 to 59 percent between 1989 and 1996. A 
possible explanation for this trend is the documented sea surface temper­
ature increase and concomitant plankton biomass decrease in the eastern 
North Pacific, resulting in an apparent reduction in POC export from surface 
waters to the deep ocean. Continuation of this trend could profoundly 
impact geochemical cycling as well as the structure and dynamics of deep-
sea communities. 
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the relation between food supply and demand in 
an area of the deep sea with strong seasonality 
in primary production in the overlying waters. 
We measured the flux of sinking POC at 600 
and 50 m above bottom (rnab) continuously 
from June 1989 until October 1996 at an abys- 
sal station (Station M; 4100 m water depth), 
220 km off the central California coast (8, 10, 
11). This station is described in detail elsewhere 
(8, 9). Here we report results from October 
1989 through October 1996, representing seven 
complete annual cycles. 

In situ measurements of SCOC were 
made with a free-vehicle grab respirometer 
(FVGR) (5) on seasonal cruises throughout 
the study (6, 8, 12, 13). For comparison with 
the FVGR data, in situ measurements of 
SCOC were made with two other, indepen- 
dent instruments during this study. Thirty- 
nine measurements of SCOC were collected 
with tube core respirometers (TCRs) placed 
by the submersible Alvin, and high-temporal- 
resolution measurements of SCOC were 
made with an autonomous bottom-transecting 
vehicle (ROVER) (14) from January through 
May 1996 at 17 sites. Synchronous measure- 
ments of SCOC by the FVGR and TCRs (Fall 
1994 and Spring 1995) and the FVGR and 
ROVER (Spring 1996) were not significantly ' 
different (14, 15). 

The flux of sinking POC at 600 and 50 
rnab varied considerably on both intra- and 
interannual scales, with 10-day-averaged 
fluxes ranging from 0.16 to 27.87 mg C m-2 
day-' between October 1989 and October 
1996 (Fig. 1A). The highest peaks in POC 
flux occurred in summer and fall with the 
lowest fluxes in winter. On an annual basis, 
the highest POC fluxes were in 1991, 1993, 
and 1994 and the lowest fluxes in 1992,1995, 
and 1996. POC fluxes were consistently 
higher at 50 rnab than at 600 rnab, suggesting 
local resuspension or lateral input from the 
continental margin to the east (8, 11, 16). 

Seasonal measurements of SCOC showed 
fluctuations similar to those in POC flux, 
with highest rates in summer and fall and 
lowest rates during the winter months (Fig. 
1). However, the magnitude of the fluctua- 
tions in SCOC varied by a factor of 3 (5.0 to 
15.7 mg C mV2 day-'), whereas POC fluxes 
varied by a factor of 174. The greater varia- 
tion in POC flux compared with SCOC may 
be attributable to two factors. First, POC flux 
was sampled with higher temporal resolution 
than SCOC, and thus the POC flux record 
includes fine-scale variability that is absent 
from the coarser-resolution SCOC record. 
Second, the magnitude of the SCOC may be 
related to the quality of the incoming POC, 
not just the quantity (1 7), resulting in a de- 
coupling of POC flux and SCOC. Interannual 
variations in SCOC measured with the FVGR 
were most pronounced in 1991 and 1993, 
corresponding to the highest peaks in POC 

flux. From January 1995 through the end of 
our study in October 1996, SCOC was con- 
sistently higher than POC flux. 

SCOC measured with the TCRs was high 
during the fall peak in POC flux in 1994 and 
similar in magnitude to POC flux in April 
1995, but lower than SCOC interpolated be- 
tween FVGR measurements in February and 
June (Fig. 1B). Contiguous measurements of 
SCOC made with the ROVER between Jan- 
uary and June 1996 closely paralleled inter- 
polated measurements of SCOC made with 
the FVGR in February and June. During this 
time period both SCOC records were consis- 
tently higher than the POC fluxes. 

The balance between POC flux and SCOC 
was expressed as a ratio, with values greater 
than unity indicating a surplus of POC and 
values less than unity indicating a deficit in 
sinking POC. P0C:SCOC exhibited consid- 
erable variability between 1989 and 1995, 
then declined sharply in 1995 and 1996 (Fig. 
2). P0C:SCOC for both collection depths 

decreased progressively beginning in October 
1989 and reached values approaching 0.1 in 
mid-1996. Between October 1989 and Octo- 
ber 1996, this relation was significantly neg- 
ative at both 600 (P = 0.004) and 50 rnab 
(P = 0.007). Total POC fluxes from 4 Octo- 
ber 1989 until 3 October 1996 were 12.1 1 g C 
m-2 at 600 rnab and 13.75 g C m-2 at 50 
mab. Compared with the total SCOC of 23.24 
g C m-2, the food supply estimated at 600 
and 50 rnab contributed only 52.1% and 
59.2%, respectively, of the sediment commu- 
nity demand. A comparison between food 
supply and demand on an annual basis re- 
vealed the best agreement in 1989 to 1990 
with 99.3% at 50 rnab and the largest discrep- 
ancy in 1995 to 1996 of 21.4% at 600 mab. 

A likely explanation for the progressive 
decline in P0C:SCOC between 1989 and 
1996 is the observation since the late 1970s 
of increasing sea surface and upper water 
column temperatures in the eastern North 
Pacific (18). Surface warming can lead to a 

Fig. 1. POC flux and 
SCOC measured at Sta- 
tion M between Octo- 
ber 1989 and October 
1996. (A) POC mea- 
surements were aver- -r 
aged over a 30-day v~ 
sampling period before E 
June (600 mab) or Oc- 0 16 
tober 1990 (50 rnab) P 
and a 10-day Sam- - 
pling period thereafter 
and are expressed as 
daily fluxes. Individual 
symbols represent the 
means of two replicate 
measurements for each 
sampling period. Repli- 
cate measurements typ- 
ically differed by less 
than 10%. "Swimmers" 
(zooplankton capable 
of swimming into the 
sediment trap rather 
than sinking in as car- 
casses) were found in - 
all traps, but the abun- ' 
dance of swimmers did $ 16 
not exhibit a signifi- 0 

cant trend over the @ 12 
time period reported - 
here. POC fluxes at 
600 mab (blue, filled 
squares) and 50 mab 
(red, filled diamonds) 
are dotted se~aratelv. 
but' during ' perio& 
when one trap failed f f  $.8;42~i$38f  ) 2 8 ; h i e j ~ ~ ~ i j $ 1 h  
to collect a sample, 1- 1990 1991 1992 l#J 1991 1SM 1999 
data from the other 
trap have been substituted (October 1992 to July 1993 at 50 mab; July 1994 to October 1994 at 600 
mab). Thick traces represent 365-day centered moving averages for the two flux records. (B) SCOC 
measurements are based on incubations of 2 days (FVGR: green, filled circles), 1 to 6 days (TCR: blue, 
filled circles), and 6.3 days (ROVER: purple, open circles). TCR and ROVER symbols are individual 
measurements, whereas FVGR measurements are presented as means -+ 1 SD. Lines connecting FVGR 
measurements represent linear interpolations between adjacent data points. Thick traces represent 
365-day centered moving averages for the SCOC records. 
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reduction in the depth of the mixed layer and population of the dominant pelagic species, the 
can decrease the supply of nutrients to the sooty shearwater Puffinus griseus (4). The de- 
euphotic zone, resulting in lower rates of crease in macrozooplankton abundance, esti- 
primary production and, consequently, less mated from quarterly offshore sampling in sur- 
export production (I). Because the magnitude 
of export production directly affects the flux 
of sinking POC to the deep ocean (19), it is 
likely that the deficit in POC supply to the 
deep-sea floor is a result of sea surface warm- 
ing and its associated effects. 

Long-term increases in sea surface temper- 
ature in the eastern North Pacific have been 
related to a number of biological impacts. Near 
shore, the abundance and stipe number (an 
index of individual size) of southern California 
populations of the kelp Macrocystis pyrifera 
have undergone a substantial decline since 
1990, following the trend of increasing sea 
surface temperature (3). In addition, long-term 
faunal changes have been reported in rocky 
intertidal communities on the central Califomia 
coast. These changes include a shift in species 
composition toward warmer-living forms, ap- 
parently as a result of increases in sea surface 
temperature over the 60-year period ending in 
1994 (20). Offshore, sea surface warming has 
been correlated with declining populations of 
zooplankton (2) and pelagic birds (4,21). Since 
the late 1970s, macrozooplankton volume in the 
Califomia Current has declined over 70%, in 
concert with increasing sea surface tempera- 
tures (1,2). Reduced macrozooplankton abun- 
dance has had a major impact at higher trophic 
levels. Sea bird abundance declined 40% within 
the California Current between 1987 and 1994, 
largely as a result of a 90% decline in the 

face waters of the Califomia Current (22), is 
significant (P = 0.015) and similar in timing 
and magnitude to the decrease we observed in 
P0C:SCOC between 1989 and 1996. 

A long-term deficit in the supply of food 
necessary to meet the metabolic demands of the 
sediment community certainly is unsustainable. 
We therefore must consider the possibilities 
that either the POC fluxes estimated from our 
collections are erroneously low or that alternate 
sources of nutrition to the benthos exist, besides 
the sinking POC collected in our sediment 
traps. There is evidence at this station that 
sediment traps tend to "clog" and undersample 
sinking particles during periods of high partic- 
ulate matter fluxes (11, 23). Methodological 
problems like clogging could contribute to the 
discrepancy but are difficult to quantifl. How- 
ever, if this mechanism were solely responsible 
for the observed flux discrepancies, one would 
conclude that the frequency of sediment trap 
clogging was increasing between 1989 and 
1996, presumably because of an increase in the 
flux of sinking particles. This explanation is 
strongly contrary to the observations of reduced 
surface production and the expectation of re- 
duced export production over this time period 
and seems unlikely to account for the observed 
POC flux discrepancies. 

A second possibility is that our sediment 
traps do not quantitatively sample certain types 
of food inputs-for example, very large parcels 

1- 1990 1991 1992 1- 1991 1M 1- 

Fig. 2. The ratio of P0C:SCOC on the basis of POC flux measurements at 50 and 600 mab and on 
SCOC measured with the FVCR. P0C:SCOC was calculated at 10-day intervals with sinking POC 
flux data (Fig. 1A) and interpolated SCOC (Fig. IB). Thin traces show "raw" P0C:SCOC values. 
Symbols indicate P0C:SCOC during 10-day time periods when measurements of both POC flux and 
SCOC were made. Thick solid lines are based on linear regressions with only data presented as 
symbols. Dashed lines indicate 95% confidence intervals for the regressions. 

of organic material (11). Such parcels could 
substantially supplement the smaller POC col- 
lected by our sediment traps, providing an im- 
portant source of nutrition for the benthic com- 
munity. However, in seasonal tows of a camera 
sled across several kilometers of sea floor at 
Station M over the 7-year monitoring period, 
we found no evidence of large, discrete food 
falls (24). Further, although this mechanism 
could provide the benthic community with a 
source of food apart from the sinking POC 
collected in our sediment traps, the existence of 
episodic organic falls would not explain the 
observed decline in our measurements of POC: 
SCOC between 1989 and 1996. 

Considerable evidence from trace metal 
and isotopic measurements of suspended par- 
ticulate matter in the water column at Station 
M suggests the input of horizontally trans- 
ported material from the continental shelf and 
slope to the east (9, 16, 25). The advective 
input of organic material was reflected in the 
sediment trap collections as consistently 
higher fluxes at 50 mab, compared with 600 
mab (Fig. 1) (11). However, even the elevat- 
ed fluxes at 50 mab account for only 59% of 
the estimated benthic metabolic demand be- 
tween 1989 and 1996, far below the levels 
necessary to achieve a balance between food 
supply and demand. 

It seems unlikely that the discrepancy we 
measured between POC flux and SCOC over 
a 7-year period could continue indefinitely 
without producing visible changes in benthic 
community structure and affecting rates of 
metabolism, growth, and reproduction among 
the benthic fauna. In the future, we would 
expect this unsustainable condition to be re- 
solved either by periodic increases in POC 
flux sufficient in magnitude to compensate 
for the deficit we observed between 1989 and 
1996 or by long-term shifts in the dynamics 
of deep-sea 'benthic communities and their 
faunal components. These shifts may affect 
not only biological processes but also geo- 
chemical cycling in the sediments and ulti- 
mately the sedimentary record. 

Climatic changes appear to exert a strong 
influence on physical conditions within the up- 
per ocean and thus impact the dynamics of 
shallow-water marine communities. These ef- 
fects in turn are translated throughout the water 
column and into the deep sea. If long-term 
climatic changes cause a progressive warming 
of the waters in the eastern North Pacific, our 
data suggest that the result may be a reduction 
in the supply of food to the deep-sea benthos. 
This reduction could oroduce a concomitant 
shift in the characteristics and, perhaps, in the 
composition of the abyssal community. 
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The concentration of atmospheric carbon dioxide was increased by 200 mi- 
croliters per liter in a forest plantation, where competition between organisms, 
resource limitations, and environmental stresses may modulate biotic respons- 
es. After 2 years the growth rate of the dominant pine trees increased by about 
26 percent relative to  trees under ambient conditions. Carbon dioxide enrich- 
ment also increased litterfall and fine-root increment. These changes increased 
the total net primary production by 25 percent. Such an increase in forest net 
primary production globally would fix about 50 percent of the anthropogenic 
carbon dioxide projected to be released into the atmosphere in the year 2050. 
The response of this young, rapidly growing forest to carbon dioxide may 
represent the upper limit for forest carbon sequestration. 

Coinbustion of fossil fuels and deforestation, 
particularly in tropical regions, are rapidly 
increasing the coiicelitration of CO, iii the 
atmosphere (I, 2). Trees that use the C, 
mechanism of photosynthesis are carbon-lim- 
ited at the current atlnospheric CO, coiicen- 
tration (3); therefore, the stiinulation of pho- 
tosynthesis by elevated CO, may increase the 
capacity of forests to store carboil in wood 
and soil organic matter. Because of their iin- 
posing contribution to global productivity 
(2), forests have the potential to reduce the 
antliropogenic increase in atmospheric CO,. 

Seedlings or saplings exposed to two 
times tlie current atlnospheric concelitration 
of CO, in growth chambers, greenhouses, or 
open-top chambers have -54% greater pho- 
tosynthesis and -31% greater biomass (4). 
These enhancements are considerably re- 
duced wl~en plaiits receive suboptinial 
amounts of other iinpo~taiit resources such as 
nitrogen ( 5 ) .  Most studies of tree rings ( 6 )  
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show no increase in growth rate in response 
to the increase in atmospheric CO, that has 
occull-ed from the pre-industrial concentra- 
tion of -280 p1 liter-' to tlie current 360 ~1 
liter-', Resource limitatioiis in natural eco- 
systems and other ecological interactions in- 
cluding competition (7) may constrain the 
potential for forests to respond to increasing 
coilcentrations of CO,. 

To examine the response of an intact for- 
est ecosystem to projected elevated conceii- 
trations of CO,, we installed a gas-delivery 
system in a 13-year-old loblolly pine (Pinw 
taedir L.) plantation in the Pied~no~it region of 
North Carolilia (35'979 79"09'W) (8) .  The 
free-air CO, eiirichinent (FACE) system (9) 
increases the concelitration of atmospheric 
CO, in 30-in-diameter experimental plots 
nested within this coiitinuous pilie forest (Fig. 
1).  Each FACE ring (plot) consists of a large 
circular plenum that delivers air to an array of 
32 veitical pipes. The pipes extend from the 
forest floor through the 14-m-tall forest can- 
opy and contain adjustable poits at 50-cm 
intervals. These poits are tuned to control the 
atmospheric concentration of CO, ([CO,]) 
through the entire volunie of forest. In the 
three elevated CO, plots, CO, was injected to 
~naintain the a t~nos~here  at~ainbient [CO,] 
plus 200 p1 liter-' (-560 p1 liter-'); three 
ambient C 0 2  plots were treated identically 
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