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disolace radiolabeled insulin binding, to IRs 10. Y. Ebina et al., Proc. Nati. Acad Sci. U.S.A. 82, 8014 18. The cytoplasmic domain of the human IR (GlngB3 t o  

exiressed in intact CHO.IR cells; n& did it 
affect the affinity of iilsulin for the receptor 
(12). Third, L-783,281. but not L-767,827, 
increased IRTK activity of recombinant IR 
in vitro (18) (Fig. 5B). Finally, the partial 
proteolysis pattern of the IR intracellular 
domain (48 kD) was altered in the presence 
of L-783.281 (Fig. 5C). A different pattern 
of proteolysis was observed when the 48- 
kD protein was incubated with an adenosine 
5'-triphosphate (ATP) analog (ATP-y-S) that 
affects IR kmase confonnation (5). Yet another 
pattein was obseived when the 48-kD protein 
was incubated with both L-783,281 and ATP- 
y-S. Of-paiticular interest was a -30-kD band 
produced when the 48-kD protein was incubat- 
ed lvit11 L-783,281 follorved by partial digestion 
with hypsin (lane 2, asteiisk). In the absence of 
L-783,281. a 10 to 50 times higher concenua- 
tion of bypsin was required to produce the 
-30-kD product. hX,-terminal peptide se- 
quencing of the -30-kD band revealed the 
sequence Tl~~~~~-Val-Asi~-Glu-Ser-Ala-Ser- 
Leu (19). This peptide is immediately adjacent 
to Lyslo3', the residue involved in ATP binding 
to the active site of the IRTK domain (2. 20). 
Thus, interaction of L-783.281 with the IR lu- 
nase domain appears to alter the confonnation 
of the protein in the region encompassing the 
ATP binding site, resulting in the exposure of 
tryptic recognition site (or sites) adjacent to 
Lys'03'. On the basis of published crystal stn~c- 
tures, conformational change in the lunase do- 
main is required for the activation of the recep- 
tor (4, 5). The results of our studies suggest that 
interaction of L-783,28 1 with IRTK alters the 
confo~mation of IRTK. leading to its activation. 

The discovery of L-783,281 demonstrates 
that a small, nonpeptidyl molecule is capable of 
mimicl&lg the in vitro and in vivo function of a 
protein 1101mone by interacting with and acti- 
vating its receptor. Vanadate is another orally 
active compound that can function in vivo as an 
insulin mimetic agent (21). However, unlike 
vanadate, which augrnellts tyrosyl phospho- 
rylation of a wide variety of cellular proteins 
and functions in vitro as an inhibitor of pro- 
tein tyrosine phosphatases (PTPases) (22), 
L-783,281 was selective for the IR and did not 
inhibit selected PTPases in vitro (12). Selective 
IR activators, as exemplified by L-783,281, 
may lead to the development of a novel class of 
antidiabetic agents. 
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Roles of Phosphorylation Sites 
in Regulating Activity of the 

Transcription Factor Pho4 
Arash Komeili and Erin K. O'Shea* 

Transcription factors are often phosphorylated at multiple sites. Here it is 
shown that multiple phosphorylation sites on the budding yeast transcription 
factor Pho4 play distinct and separable roles in regulating the factor's activity. 
Phosphorylation of Pho4 at two sites promotes the factor's nuclear export and 
phosphorylation at a third site inhibits its nuclear import. Phosphorylation of 
a fourth site blocks the interaction of Pho4 with the transcription factor Pho2. 
Multiple phosphorylation sites provide overlapping and partially redundant 
layers of regulation that function t o  efficiently control the activity of Pho4, 

Many signaling pathways rapidly and revers- 
ibly convert extracellular signals into changes 
in gene expression. Phosphoiylation of a 
transcription factor, often at multiple sites, is 
a cormnon mechanism for responding to sig- 
naling events (I). This modification can lead 
to changes in transcription factor concentra- 
tion or activity in the nucleus (2). However, 
the role of multiple pl~ospl~orylation sites in 
regulating the activity of a protein is not well 
understood. 
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To study how multiple phosphorylation 
sites control protein activity, we focused on 
the regulation of Pho4, a transcription fac- 
tor in budding yeast that activates expres- 
sion of genes induced in response to phos- 
phate starvation (3). When yeast cells are 
grown in phosphate-rich conditions. Pho4 
is phosphorylated by the Pho80!Pho85 cy- 
clin-cyclindependent kinase (CDK) com- 
plex (4) and exported to the cytoplasm ( j ) ,  
thereby terminating expression of phos- 
phate-responsive genes. The kinase P11080: 
Pho85 phosphorylates Pho4 on five Ser-Pro 
(SP) dipeptides, referred to as SP1, SP2, 
SP3, SP4; and SP6 ( 6 ) .  When yeast cells 
are starved for phosphate. the CDK inhib- 
itor Pho8 1 inactivates Pho80/Pho85 (7 ) ,  
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leading to the accumulation of unphospho- sponsive genes. when phosphorylated (Fig. 1B). Thus, phos- 
rylated Pho4 in the nucleus (6) and the Addition of phosphate to a phosphate- phorylation of Pho4 at sites 2 and 3 is nec- 
subsequent transcription of phosphate-re- starved culture causes rapid phosphorylation essary and sufficient to promote binding to 

and nuclear export of Pho4 fused to the green Msn5 (1 0). 
fluorescent protein (5) (Fig. 1A). Export of Psel , another member of the P-importin 

A No P i  Feed Pi 

Fig. 1. Phosphorylation of sites 2 and 3 promotes 
nuclear export of Pho4. (A) Localization of wild- 
type Pho4-CFP, or the indicated Pho4 mutants 
fused to  CFP, in cells grown in no phosphate 
medium. For the Feed Pi sample, phosphorylation 
and nuclear export of Pho4-CFP were triggered 
by addition of phosphate to a culture that had 
been grown in no phosphate medium (25). (B) 
Wild-type Pho4 and the indicated Pho4 mutants, 
joined to two IgC-binding z domains derived from 
protein A (Pho4-n), were phosphorylated (+ATP) 
or mock phosphorylated (-ATP) in vitro, immo- 
bilized on IgC-Sepharose, and binding to  MsnS- 
His, was measured (26). (Top) The amount of 
bound MsnS-His, was analyzed on a silver- 
stained SDS-PACE (polyacrylamide gel electro- 
phoresis) gel. (Bottom) The amount of immobi- 
lized Pho4-n was analyzed on a Coomassie- 
stained SDS-PACE gel 

Fig. 2. Phosphorylation of 
site 4 inhibits nuclear import 
of Pho4. (A) Wild-type Pho4- 
n and the indicated Pho4-zz 
mutants were phosphoryl- 
ated (+ATP) or mock phos- 
phorylated (-ATP) in vitro, 
immobilized on IgC-Sepha- 
rose, and binding t o  Psel- 
His, was measured (7 7). The 
amount of bound Psel-His, 

P h d  requires phosphoryiation by ~ho801 
Pho85; P h d  is localized to the nucleus and 
l l l y  active transcriptionally in strains lacking 
Pho80 or Pho85 (6). Additionally, the nonphos- 
phorylatable mutant PhdSA'2346 (containing 
Ser-Ala substitutions at the five sites of 
phosphorylation) is constitutively localized 
to the nucleus and partially active transcrip- 
tionally (6). To determine which of the five 
phosphorylation sites are required for the 
export of Pho4, we tested the ability of 
Pho4 mutants to be exported from the 
nucleus. P ~ O ~ ~ ~ ' - G F P ,  P ~ O ~ ~ ~ ~ - G F P ,  and 
P ~ O ~ ~ ~ ~ - G F P ,  containing an individual 
Ser-Ala substitution at phosphorylation 
site 1, 4, or 6, had no defect in nuclear 
export (8). However, P ~ O ~ ~ ~ ~ - G F P  and 
P ~ o ~ ' ~ ~ - G F P ,  containing a Ser-Ala sub- 
stitution at sites 2 and 3, respectively, could 
not be exported (Fig. 1A). Additionally, 
P ~ O ~ ~ ~ ' ~ ~ - G F P ,  a mutant that can only be 
phosphorylated on sites 2 and 3, was ex- 
ported from the nucleus upon addition of 
phosphate (Fig. 1A). Thus, phosphorylation 
of sites 2 and 3 is necessary and sufficient 
for nuclear export of Pho4. 

Msn5, a member of the P-importin family 
of nuclear transport receptors, is the export 
receptor for Pho4 (5). In vitro, Msn5 and the 
small guanosine triphosphatase (GTPase) 
Ran (in its GTP-bound state) form a stable 
complex with phosphorylated Pho4, but not 
with unphosphorylated Pho4 (5). We exam- 
ined whether phosphorylation of sites 2 and 3 
is also required for an interaction with MsnS 
in vitro. Pho4SA'46 and Pho4SA23 were 
tagged with two immunoglobulin G (IgGb 
binding "z" domains derived from protein A 
( P h 0 4 ~ ~ ' ~ ~ - z z  and PhdSAZ3-zz), phospho- 
rylated in vitro (9), and assayed for MsnS 
binding in the presence of GsplQ7 1 L, a yeast 
Ran mutant locked in the GTP-bound form. 
P h 0 4 ~ ~ ' ~ - z z  failed to interact with Msn5 in 
either its phosphorylated or unphospho- 
rylated form (Fig. 1B). By contrast, 

interacted with Msn5 only 

Pho4-a 
A T P  + - + 

family of transport receptors, is the import 
receptor for Pho4 (11). Phosphorylation of 
Pho4 inhibits its interaction with Psel. Be- 
cause phosphorylation site 4 is contained 
within the nuclear localization signal 
(NLS) of Pho4 (I l) ,  phosphorylation of 
this site might inhibit the interaction be- 
tween Pho4 and Psel. P h 0 4 ~ ~ ~ - z z  (a mu- 
tant that can be phosphorylated on all sites 
except site 4) and Pho4SA'236-zz (a mutant 
that can only be phosphorylated on site 4) 
were phosphorylated in vitro and assayed for 
binding to Psel. Phosphorylateil PhdSA4-zz 
bound to Psel, whereas PhdSA'236-zz failed to 
bind Psel when phosphorylated (Fig. 2A). 
Thus, phosphorylation of Pho4 at site 4 is 
necessary and sufficient to disrupt the asso- 
ciation of Pho4 and Psel. 

We examined the role of phosphoryla- 
tion of site 4 in regulating import of P h d  in 
vivo. We used a mutant that cannot be export- 
ed, because export of P h d  and a block & its 
import both lead to its cytoplasmic accumula- 
tion. Because phosphorylation of P h d  by 
Pho801Pho85 occurs in the nucleus (9, we 
attempted to mimic phosphorylation of site 4 by 
substituting Ser with Asp. PhdSA'236SD4-zz 
(containing Ser-Ala substitutions at sites 1,2, 
3, and 6 and a Ser-Asp substitution at site 4) 
failed to bind Psel in vitro (Fig. 2A). To exarn- 
ine the effect of the Asp substitution on import 
of P h d  in vivo, we induced expression of 
PhdSA'2346 and PhdSA'236SD4 fused to three 
tandem copies of GFP (GFP,) (12) and moni- 
tored the localization of these proteins by fluo- 
rescence microscopy. One-and-one-half hours 
after induction, PhdSA'2346-GFP3 remained 
nuclear, whereas PhdSA'236SD4-GFP3 was 
mainly cytoplasmic (13, 14) (Fig. 2B). Thus, 
phosphorylation at site 4 inhibits nuclear import 
of Phd.  

If control of nuclear localization is the 
only mechanism by which phosphorylation 
regulates the activity of Pho4, then Pho4 that 
is localized to the nucleus should activate 
transcription of phosphate-responsive genes 

Sllver Staln 

Coornassle Staln 

was analyzed on a silver: 
stained SDS-PACE gel. The amount of immobilized Pho4-zz was cated b the asterisk). (B) Expression of Pho4SA'2346-CFP3 or Y analyzed on a Coomassie-stained SDS-PACE gel. The band below Ph04'~' 36SD4-GFP3 was induced, and Localization was monitored by 
Psel-His, is an NH2-terminally truncated form of the protein (indi- fluorescence microscopy (27). 
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in both high- and low-phosphate conditions. 
Therefore, we measured production of the 
secreted acid phosphatase Pho5 in a strain 
expressing Pho4SA'234, a mutant containing 
Ser-Ala substitutions at sites 1, 2, 3, and 4 
(IS) that was constitutively localized to the 
nucleus (Fig. 3A). Although expression of 
acid phosphatase was elevated in yeast ex- 
pressing Pho4SA1234 grown in phosphate-rich 
medium (16), it was further induced in re- 
sponse to phosphate starvation (Fig. 3B). Ad- 
ditionallv. an msn5A strain. in which Pho4 is . , 
constitutively localized to the nucleus be- 
cause it cannot be exported, produces high 
levels of acid phosphatase when starved for 
phosphate (8), but not when grown in phos- 
phate-rich medium (5). Thus, another mech- 
anism, distinct from control of its localiza- 
tion, regulates the activity of Pho4. 

The only site that can be phosphorylated 
in the Pho4SA'234 mutant is site 6. We 
constructed a mutant Pho4 that could not be 
phosphorylated on site 6 by making a 
Pro-Ala substitution in the Ser-Pro dipep- 
tide corresponding to phosphorylation site 
6 (Pho'IPA6) (17). We did not use a 
Ser-Ala substitution to prevent phospho- 
rylation of site 6 because the mu- 
tant is not fully functional in activating 
transcription of acid phosphatase (18). Lo- 
calization of P ~ o ~ ' ~ ~ - G F P  was regulated 
in response to phosphate levels (Fig. 3A), 
and P h 0 4 ' ~ ~  was fully functional as a tran- 
scriptional activator (Fig. 3B). We com- 
bined the mutations that cause Pho4 to be 
constitutively localized to the nucleus with 
the Pro-Ala mutation at site 6 to create 
Pho4SA1234PA6 (Fig. 3A). In contrast to a 
strain expressing Pho4SA1234, a strain ex- 
pressing Pho4SA'234PA6 produced acid 
phosphatase at nearly fully induced levels 
when grown in high-phosphate medium 
(19) (Fig. 3B). Additionally, a strain lack- 
ing the export receptor Msn5 and express- 
ing P h 0 4 ' ~ ~  produced high levels of acid 
phosphatase when grown in phosphate-rich 
medium (8). Thus, phosphorylation of site 
6 provides an additional mode for regulat- 
ing the activity of Pho4. These observations 
suggest that phosphorylation by PhoSOI 
Pho85 is the primary mode of regulating 
Pho4 in response to phosphate availability 
(20). 

Phosphorylation site 6 lies within a re- 
gion of Pho4 involved in binding to the 
transcription factor Pho2 (21). Pho2 is re- 
quired for transcription of p H 0 5  (3), inter- 
acts with Pho4, and binds cooperatively 
with Pho4 to the PHOS promoter (22). To 
determine if phosphorylation of site 6 mod- 
ulates the interaction between Pho4 and 
Pho2, we phosphorylated a Pho4-zz fusion 
protein in vitro and assayed for its binding 
to Pho2. Pho2 bound to unphosphorylated 
Pho4-zz, but not to phosphorylated Pho4- 

zz, indicating that phosphorylation of Pho4 
inhibits its interaction with Pho2 (Fig. 3C). 

which can only be phospho- 
rylated on site 6, bound to Pho2 when 
unphosphorylated, but not when phospho- 
rylated (Fig. 3C). Additionally, P h 0 4 ' ~ ~ -  
zz, a mutant that can be phosphorylated on 
all sites except site 6, bound to Pho2 inde- 
pendent of its phosphorylation state (Fig. 
3C). Thus, phosphorylation of site 6 is 
necessary and sufficient to inhibit interac- 
tion of Pho4 with Pho2 (23). 

\ ,  

Regulation of nuclear localization and 
regulation of the interaction with Pho2 pro- 
vide partially redundant levels of regulation 
to control the activity of Pho4; yeast express- 
ing either Pho'IPA6 (regulated only by nuclear 
localization) or Pho4SA1234 (regulated only 
by control of the interaction with Pho2) in- 
duce transcription of the acid phosphatase 
Pho5 in response to phosphate starvation 

(Fig. 3B). Although overlapping, both levels 
of regulation are required for complete re- 
pression of Pho5 expression, because acid 
phosphatase expression is not completely re- 
press~$ in yeast expressing Pho4SA1234 or 
Pho4 (Fig. 3B). Therefore, multiple phos- 
phorylation sites may exist to ensure com- 
plete shutoff of transcription. 

The phosphorylation events that modify 
Pho4 have unique and separable roles in reg- 
ulating the protein's export, import, and abil- 
ity to activate transcription in the nucleus 
(Fig. 4). Multiple levels of regulation coop- 
erate to control Pho4 in a switchlike manner. 
Many transcription factors, CDK inhibitors, 
and other regulatory proteins are phosphoryl- 
ated on multiple sites, but the role of these 
phosphorylation events is not well under- 
stood. Phosphorylation may provide multiple 
levels of control that are important for effi- 
cient regulation of proteins other than Pho4. 

Fig. 3. Pho4 is regulated by a mechanism dist~nct 
from control of its nuclear localization. (A) Localiza- 
tion of the indicated Pho4 mutants fused to CFP in 
cells grown in no or high-phosphate medium (25). 
(B) Measurement of Pho5 acid phosphatase enzyme 
activity in either pho41 pho31 or pho4A p h o 8 0 ~  
pho3.I yeast strains (24) transformed with a low- 
copy plasmid expressing the indicated Pho4 mutant 
(28). The pho4.I pho3A strain expressing the indi- 
cated Pho4 mutant was grown in high- (black boxes) 

Phoqs4723d PhoqP4e Ph~qS412J4C or low-phosphate (white boxes) medium and the 

B 
4i3 pho4A pho80A pho31 strain was grown in high- 

phosphate medium (gray boxes). (C) Wild-type 
16 Pho4-zz and the indicated Pho4-u mutants were 
14 phosphorylated (+ATP) or mock phosphorylated 

E 12 
(-ATP) in vitro, immobilized on IgC-Sepharose, and 

- 
> - - binding to Pho2-His, was measured (29). (Top) The 
q l o  amount of bound Pho2-His, was analyzed by 

2 8 SDS-PACE followed by protein immunoblot- 
C ting with anti-Pho2. (Bottom) The amount 
k 6 of immobilized Pho4-zz was analyzed on a Coo- 
YI : 4 

massie-stained SDS-PACE gel. 

P h & Z F 4  gllp-q L L " S i l r r  
A T P -  + -  + -  + 

Fie. 4. Phosphowlation E x m  
events regulate 'Phdby dis- 

ST Pho2 Blndlng 
tinct and se~arable rnecha- 
nisrns. Sies Lf ~hosphorVla- spl I SF sp4 
tion consist of' f ive' ~ e r ~ ~ r o  1 75 991 1 I 
dipeptides labeled SP1. I 1 1  - - - - - - - . . - - - 
SP2, 9'3, SP4, and SF6 Transactivatlon NLS DNA Binding 

(amino acids 100, 114, 
128,152, and 223) (6). The Import 

activation and DNA binding domains are indicated (30). Sites 2 and 3 regulate nuclear export, site 4 
regulates import, and site 6 regulates the interaction with the transcription factor Pho2. We have not 
been able to  determine a function for phosphorylation site 1 (15). 
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