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Discovery of a Small Molecule 
Insulin Mimetic with 

Antidiabetic Activity in Mice 
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Insulin elicits a spectrum of biological responses by binding to its cell surface 
receptor. In a screen for small molecules that activate the human insulin 
receptor tyrosine kinase, a nonpeptidyl fungal metabolite (L-783,281) was 
identified that acted as an insulin mimetic in several biochemical and cellular 
assays. The compound was selective for insulin receptor versus insulin-like 
growth factor I (IGFI) receptor and other receptor tyrosine kinases. Oral ad- 
ministration of L-783,281 to two mouse models of diabetes resulted in sig- 
nificant lowering in blood glucose levels. These results demonstrate the fea- 
sibility of discovering novel insulin receptor activators that may lead to new 
therapies for diabetes. 

The actions of insulin are initiated by its 
binding to the insulin receptor (IR), a disul- 
fide-bonded heterotetraineric membrane pro- 
tein (1-3). Insulin binds to two asyinmetric 
sites on the extracellular a subunits and caus- 
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es conformational changes that lead to auto- 
phosphoi-ylatio~~ of the membrane-spanning P 
subunits and activation of the receptor's in- 
trinsic tyrosine ltinase (4 ,5 ) .  Insulin receptors 
transphospl~oiylate several immediate sub- 
strates (on Tyr residues) including insulin 
receptor substrate (IRS) proteins (6). These 
events lead to the activation of downstream 
signaling molecules. The filnction of the re- 
ceptor tyrosine kinase is essential for the 
biological effects of insulin (1-61. \ ,  
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More importantly, substantial decreases in 
insulin-stimulated receptor tyrosine kinase 
activity and defects in receptor-mediated IRS 
phosphorylation or phosphatidylinositide (PI) 
3-kinase activation have been found in mus- 
cle or fat tissue from NIDDM patients or 
rodent NIDDM models (7-9). Thus, a subset 
of NIDDM patients have clear defects in 
insulin signaling that, in theory, might be 
overcome by treatment aimed at augmenting 
IR function. Given that most NIDDM pa- 
tients respond to insulin secretagogues (sul- 
fonylureas) or to moderate doses of exoge- 
nous insulin, new approaches that mimic in- 
sulin's effects or augment the effect of resid- 

o 10s 10-5 10-5 
Concentrat~on (M) 

C 

Insulin (M) 

Fig. 1. (A) Structures and (B and C) effects on 
IRTK activity in CHO.IR cells. CHO.IR cells were 
cultured in 96-well plates (150.000 cells per 
well) for 24 hours and then serum-starved for 2 
hours before treatment with test compounds 
or insulin in the presence of 0.1% dimethyl 
sulfoxide (DMSO) in the medium for 20 min at 
37OC. Preparation of cell lysates, immunopuri- 
fication of IR, and measurement of IRTK activ- 
ity were performed as described (23). Recep- 
tors were captured with antibody to  IR (Ab-3, 
Oncogene Science Diagnostics. Cambridge, 
Massachusetts), and IRTK activity was mea- 
sured with [y -3ZP]ATP and poly(Clu:Tyr) (4:l) 
as substrate. The activities of test compounds 
were expressed as a percentage of the maximal 
activity achieved with 100 nM insulin. (B) Dose- 
response curves for L-783,281 and L-767,827. 
(C) Cells were treated with insulin in the ab- 
sence or presence of L-783,281. 

ual endogenous insulin are likely to be 
beneficial. Because patients with type 1, in- 
sulin-dependent, diabetes depend on paren- 
teral exogenous insulin injections for meta- 
bolic control, the discovery of orally active 
small molecules that mimic insulin's effects 
could eventually lead to alternative therapies 
for this disorder. 

To identify small molecule IR activators, 
we designed a cell-based screening assay 
with Chinese hamster ovary cells that over- 
express the human IR (CHO.IR) (10). After 
incubation of intact cells with insulin or test 
compounds, IR is immunopurified and as- 
sayed for tyrosine kinase (IRTK) activity to- 
ward an exogenous substrate. Through exten- 
sive screening of over 50,000 mixtures of 
synthetic compounds and natural products, 
we identified a small molecule (L-783,281) 
(Fig. 1A) from a fungal extract (Pseudomas- 
saria sp.) that was reproducibly active in the 
assay (11). At concentrations of 3 to 6 pM, 
L-783,281 induced 50% of the maximal ef- 
fect of insulin on IRTK activity (Fig. 1B). 
Substantial enhancement of insulin-stimulat- 
ed IRTK activation was also observed at 
lower concentrations (0.6 to 2 pM) (Fig. lC), 
consistent with the notion that L-783,281 can 
function as an insulin sensitizer. In contrast, a 
closely related natural product analog, 

L-783,281 (M) 

Fig. 2. Selectivity of L-783,281. (A) Tyrosine 
phosphorylation of IRS-1 and P subunits of IR 
or IGFlR (23). CHO.IR or CHO.IGFIR cells were 
left untreated (0), or treated with insulin (In) 
(10 nM), ICFl (100 nM). or 10 p M  L-783,281 
(281). Proteins were separated by electro- 
phoresis, blotted onto a membrane, and detect- 
ed with an antibody to  phosphotyrosine (PYZO, 
Transduction Laboratories, Lexington, Ken- 
tucky). (B) Activation of RTKs by L-783,281 in 
CHO.IR. CHO.ICFIR. CHO.ECFR, or CHO.PDGFR 
cells. Cells were treated with L-783.281 or cog- 
nate receptor ligands. The activity of L-783,281 
was expressed as a percentage of control max- 
imal activity (achieved with 100 nM insulin for 
IR, 100 nM ICFl for ICFIR, 10 nM ECF for ECFR. 
or 0.1 p g  of PDCF per milliliter for PDGFR). 

L-767,827 (hinulliquinone), was - 100 times 
less active in the assay. 

L-783,28 1 induced phosphorylation of the 
IR P subunit and IRS-1 in CHO.IR cells, as 
evidenced by anti-phosphotyrosine immuno- 
blotting (Fig. 2A). In contrast, in CHO cells 
overexpressing the insulin-like growth factor 
receptor (CHOJGFIR), L-783,281 (10 pM) 
did not stimulate IGFIR or IRS-1 tyrosyl 

::w, , , , , ,,, , , , , , 
0 

o I 04 1 0-5 1 o4 
L-783,281 (M) 

Fig. 3. Activation of the insulin signaling path- 
way in cells treated with L-783,281. (A) Acti- 
vation of PI 3-kinase. CHO.IR cells were treated 
with L-783,281 or 100 nM insulin for 20 min or 
left untreated. Proteins from lysates were im- 
munoprecipitated with an antibody to phos- 
photyrosine, and PI 3-kinase activity was mea- 
sured (23). Activity is expressed as a percent- 
age of control (100 nM insulin). (B) Phospho- 
rylation of Akt. CHO.IR cells were treated 
with L-783.281 or 10 nM insulin for 20 min. 
Fractionated proteins were blotted onto a 
membrane and detected with an antibody specif- 
ic for Phospho-Ser-473 of Akt (New England 
Biolabs, Beverly, Massachusetts). (C) Glucose 
uptake. Adipocytes from male Wistar rats were 
incubated with L-783.281 (10 pM) for 30 min. 
[14C]Clucose was added, and the cells were 
further incubated for 5 min. [14C]Clucose up- 
take by adipocytes was quantitated (75). In the 
same experiment, insulin (7 nM)-stimulated 
glucose uptake was 450% that of basal uptake. 
(D) Glucose uptake in intact soleus muscle 
from lean (C57BL6) mice (76). Tissue was first 
incubated with L-783,281 for 30 min and then 
with 1 mM 2-deoxy-[1,2?H]glucose (2.5 pCi/ 
ml) and 19 mM [14C]mannitol (0.35 pCi/ml) for 
30 min. Muscles were then processed as de- 
scribed (24). In the same experiment, insulin- 
stimulated 2-deoxyglucose was 212 and 430% 
that of basal uptake, for 0.03 and 2.0 m u  of 
insulin per milliliter, respectively. Shown are 
the mean 2 SEM for each data point (at least 
triplicate determination). ' P  < 0.02 (Student's 
t test). 
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phosphorylation. No other L-783,281-in- rosine kinase or anti-phosphotyrosine en- 
duced tyrosyl protein phosphorylation was zyme-linked immunosorbent assays were ap- 
evident, suggesting that the compound is se- plied to CHO.IGFIR cells and epidermal 
lective for- IR versus IGFIR activation. In growth factor receptor-overexpressing cells 
subsequent studies in which quantitative ty- (CHO.EGFR), respectively, L-783,281 was 

Fig. 4. Antidiabetic ef- 
ficacy of orally admin- 
istered L-783,281 in 
mouse models of dia- 
betes. (A) Acute glu- 
cose lowering by L- 
783,281 in db/db mice. 
Nineweek-old male db/ 
db mice (Jackson Labs) 
were orally treated (by 
gavage) with vehicle 
[0.5% methylcellulose 
(O)] or with single dos- 
es of L-783,281 [5 mg/ 
kg (0) or 25 rng/kg 
(U)] followed by im- 
mediate removal of 
food. Mice had free ac- 

0 1  
0 1 2 3 4  

lime (hours) 
450 B 

cess to water. BIOO~ 5 0 1  
glucose was monitored 0 3 7 Veh~cle L-783,281 
before and after dosing Day 
at 1-hour intervals with 
a One Touch Glucometer (Lifescan, Milpitas, California). (A) Lean control mice (not dosed). (B) Glucose 
lowering in db/db mice after long-term dosing. Eight-week-old male db/db mice were treated daily with 
an oral dose of vehicle (0) or L-783,281 [5 mg kg-' day-' (0) or 20 mg kg-' day-' (U)]. Mice were 
fed ad libitum. (A) Lean control mice (not dosed). (C) Glucose tolerance test in ob/ob mice. 
Twelve-week-old male ob/ob mice (Jackson Labs) were orally dosed with vehide or with a single dose 
of L-783,281 [5 mg/kg (0) or 20 mg/kg (El)] followed by immediate removal of food. Mice had free 
access to  water. A bolus of glucose (0.3 gm/kg) was injected intraperitoneally 3 hours later. (A) Lean 
control mice. (D) Plasma insulin level in 12-week-old ob/ob mice before and 4 hours after single oral 
dosing of L-783,281. Shown are the mean + SEM for each data point (n = 7 to 9 for each group). In 
some instances SEMs are within the area of the symbols. *P < .05; **P < 0.002 (Student's t test). All 
animals were fed ad libitum before the study. Animal care was in accordance with institutional 
guidelines. 

chyme. Fig. 5. Interaction of 
L-783,281 with intra- 

4 z 6  7 7 cellular domain of IR. 
7 (A) Activation of TK 

in CHO cells express- 
ing an IRRIIR chimera. 
CHO.IRR/IR cells (77) 
were treated with 100 

F . - 5 %  21 nM insulin or L-783,281 
$ N (D o 2: for 20 rnin. (B) In vitro - 2 1' activation of IRTK. Re- 

L-783,281 1 ,  - combinant CST-IRK (78) 
B was incubated with 50 

Htstone H2B ., , mM tris-HCI (pH 7.4), 
o 281 827 10 mM MgCL,, and 50 p M  ATP with or without test compounds 

, 4000 for 15 min at 2S°C. Histone H2B (final concentration 0.35 

.g.; 3ooo] 
and [Y-~~P]ATP (0.25 p,C~/pl) were added and the samples further 

.- - incubated for 10 min. Proteins were separated by electrophoresis, 

S $2000 and the signal was detected with a Phosphorlmager (Molecular 
Dynamics). (Top) An image of 32P-phosphorylated histone H2B. 5 1000 (Bottom) The intensity of phosphorylated H2B bands was quan- zm - 2. 

0 
titated as a measure of IRTK activity. Shown are the mean * SEM 

- for each data point (at least triplicate determinat~on). (C) 
m cu 

q L-783,281 alters protease sensitivity of recombinant IR intracel- 
2 lular domain. GST-IRK protein was digested with thrombin, and 
h r. 
i i the 48-kD protein encompassing the ~ntracellular domain of IR 

was purified. This protein (10 pM) was subjected to  limited 
trypsin or chymotrypsin (Chymo.) digestion in the presence or absence of compounds. The digestion 
mixtures were separated by electrophoresis and the gels were stained with Coomassie blue. U: 
undigested protein; lanes 1 and 5: DMSO control; lanes 2 and 6: 200 pM L-783.281; lanes 3 and 7: 5 mM 
ATP-y-5; Lanes 4 and 8: 200 pM L-783,281 plus 5 rnM ATP. The asterisk indicates the 30-kD digestion 
product (see text). 

found to weakly activate IGFIR and EGFR at 
concentrations greater than 30 pM (Fig. 2B). 
In addition, L-783,281 did not induce EGFR 
activation (up to 60 pM) in a human epider- 
moid carcinoma cell line (A43 1) that express- 
es high levels of endogenous EGFR (12). The 
compound (up to 100 pM) also did not acti- 
vate the platelet-derived growth factor recep- 
tor (PDGFR) in transfected CHO cells (Fig. 
2B) or in fetal human foreskin fibroblasts, 
which express high levels of endogenous 
PDGFR (12). 

In addition to stimulating IR-mediated 
IRS-1 phosphorylation, L-783,281 activated 
other components of the insulin signal trans- 
duction pathway. It stimulated PI 3-kinase 
activity (13) (Fig. 3A) and phosphorylation 
of Akt kinase (14) in CHO.IR cells (Fig. 3B). 
L-783,281 also stimulated glucose uptake in 
rat primary adipocytes (263% of basal level 
at 10 pM) (15) (Fig. 3C) and in isolated 
soleus muscle from lean mice (237% of basal 
level at 2 pM) (16) (Fig. 3D). 

We next tested the in vivo efficacy of 
L-783,281 in db/db and ob/ob mice, two 
models of NIDDM. Single dose oral admin- 
istration of L-783,281 resulted in dose-de- 
pendent lowering of blood glucose (Fig. 
4A), with >50% transient correction of 
hyperglycemia achieved at 25 mglkg (over 
3 to 6 hours; food withheld). Long-term 
daily oral administration of L-783,28 1 (at 5 
or 20 mg kg-' day-') for 7 days also 
resulted in significant correction of hyper- 
glycemia in db/db mice fed ad libitum (Fig. 
4B). The effect of L-783,281 on blood 
glucose in db/db mice was independent of 
an effect on circulating glucagoh (12) and 
independent of food intake. Administration 
of L-783,281 to ob/ob mice, which have 
extreme hyperinsulinemia and mild hyper- 
glycemia, resulted in significant and dose- 
dependent improvement in glucose toler- 
ance (Fig. 4C). Single oral doses of 
L-783,28 1 also suppressed elevated plasma 
insulin levels in ob/ob mice (Fig. 4D). 
Long-term treatment (up to 15 days) with 
therapeutic doses of L-783,281 did not af- 
fect food intake, body weight, organ 
weights, or blood chemistry (values of stan- 
dard physiological indicators such as liver 
function were normal) (12). 

We also investigated the mechanism of 
action of L-783,281. Several lines of evi- 
dence suggested that L-783,281 directly ac- 
tivates the IR intracellular P subunit (ty- 
rosine kinase domain). First, in experi- 
ments with transfected CHO cells 
(CHO.IRR/IR), which overexpress chimer- 
ic receptors composed of the IR intracellu- 
lar domain fused to the nonhomologous 
IR-related receptor (IRR) extracellular do- 
main (1 7), L-783,281 (but not insulin) still 
activated the receptor tyrosine kinase activ- 
ity (Fig. 5A). Second, L-783,281 did not 

976 7 MAY 1999 VOL 284 SCIENCE www.sciencemag.org 



R E P O R T S 

displace radiolabeled insulin binding to IRs 
expressed in intact CHO.IR cells, nor did it 
affect the affinity of insulin for the receptor 
(12). Third, L-783,281, but not L-767,827, 
increased IRTK activity of recombinant IR 
in vitro (18) (Fig. 5B). Finally, the partial 
proteolysis pattern of the IR intracellular 
domain (48 kD) was altered in the presence 
of L-783,281 (Fig. 5C). A different pattern 
of proteolysis was observed when the 48-
kD protein was incubated with an adenosine 
5'-triphosphate (ATP) analog (ATP-7-S) that 
affects IR kinase conformation (5). Yet another 
pattern was observed when the 48-kD protein 
was incubated with both L-783,281 and ATP-
7-S. Of particular interest was a ~30-kD band 
produced when the 48-kD protein was incubat­
ed with L-783,281 followed by partial digestion 
with trypsin (lane 2, asterisk). In the absence of 
L-783,281, a 10 to 50 times higher concentra­
tion of trypsin was required to produce the 
~30-kD product. NH2-terminal peptide se­
quencing of the ~30-kD band revealed the 
sequence Thr! °31 - Val-Asn-Glu-Ser-Ala-Ser-
Leu (19). This peptide is immediately adjacent 
to Lys1030, the residue involved in ATP binding 
to the active site of the IRTK domain (2, 20). 
Thus, interaction of L-783,281 with the IR ki­
nase domain appears to alter the conformation 
of the protein in the region encompassing the 
ATP binding site, resulting in the exposure of 
tryptic recognition site (or sites) adjacent to 
Lys1030. On the basis of published crystal struc­
tures, conformational change in the kinase do­
main is required for the activation of the recep­
tor (4, 5). The results of our studies suggest that 
interaction of L-783,281 with IRTK alters the 
conformation of IRTK, leading to its activation. 

The discovery of L-783,281 demonstrates 
that a small, nonpeptidyl molecule is capable of 
mimicking the in vitro and in vivo function of a 
protein hormone by interacting with and acti­
vating its receptor. Vanadate is another orally 
active compound that can function in vivo as an 
insulin mimetic agent (21). However, unlike 
vanadate, which augments tyrosyl phospho­
rylation of a wide variety of cellular proteins 
and functions in vitro as an inhibitor of pro­
tein tyrosine phosphatases (PTPases) (22), 
L-783,281 was selective for the IR and did not 
inhibit selected PTPases in vitro (12). Selective 
IR activators, as exemplified by L-783,281, 
may lead to the development of a novel class of 
antidiabetic agents. 
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To study how multiple phosphorylation 
sites control protein activity, we focused on 
the regulation of Pho4, a transcription fac­
tor in budding yeast that activates expres­
sion of genes induced in response to phos­
phate starvation (3). When yeast cells are 
grown in phosphate-rich conditions, Pho4 
is phosphorylated by the Pho80/Pho85 cy-
clin-cyclin-dependent kinase (CDK) com­
plex (4) and exported to the cytoplasm (5), 
thereby terminating expression of phos­
phate-responsive genes. The kinase Pho80/ 
Pho85 phosphorylates Pho4 on five Ser-Pro 
(SP) dipeptides, referred to as SP1, SP2, 
SP3, SP4, and SP6 (6). When yeast cells 
are starved for phosphate, the CDK inhib­
itor Pho81 inactivates Pho80/Pho85 (7), 
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Transcription factors are often phosphorylated at multiple sites. Here it is 
shown that multiple phosphorylation sites on the budding yeast transcription 
factor Pho4 play distinct and separable roles in regulating the factor's activity. 
Phosphorylation of Pho4 at two sites promotes the factor's nuclear export and 
phosphorylation at a third site inhibits its nuclear import. Phosphorylation of 
a fourth site blocks the interaction of Pho4 with the transcription factor Pho2. 
Multiple phosphorylation sites provide overlapping and partially redundant 
layers of regulation that function to efficiently control the activity of Pho4. 
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