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Interaction of Diphtheria Toxin 
T Domain with Molten 

Globule-Like Proteins and Its 
Implications for Translocation 

Jianhua Ren,'" Kelli Kachel,'" Hyun Kim,' 
Susan E. Malenbaum,'+ R. John Collier,' Erwin London1$ 

The transmembrane (T) domain of diphtheria toxin has a critical role in the low 
pH-induced translocation of the catalytic domain (A chain) of the toxin across 
membranes. Here i t  is shown that at low pH, addition of proteins in a partly 
unfolded, molten globule-like conformation converted the T domain from a 
shallow membrane-inserted form to its transmembrane form. Fluorescence 
energy transfer demonstrated that molten globule-like proteins bound to the 
T domain. Thus, the T domain recognizes proteins that are partly unfolded and 
may function in translocation of the A chain as a transmembrane chaperone. 

Diphtheria toxin, a protein secreted by Co- 
i~webactei.izliiz c/iplzt/~ei.irre. consists of an 4 
chain (2 1 ID) and a B chain (37 Id)). The A 
chain is the catalytic domain, and the B chain 
contains the hanslnelnbrane (T) and receptor- 
binding dolnains (1). After binding to mamma- 
lian cells and undergoing endocytosis. the toxin 
pastially unfolds within the low pH of the en- 
dosomal lumen. This exposes hydrophobic 
sites, induces membrane insertion, and results 
in hanslocatioll of the A chaill into the c)-to- 
plasm (2-4). Translocatioll is believed to in- 
volve the interaction of a trallsn~ernbralle 
structure formed largely by the T donlaill 
with the partly unfolded A chain (2-6). 
Recent studies have shown the T domain 
can exist in both partially membrane-pene- 
trating (P) and transmembrane (TM) con- 
formations (7, 8) .  Conversion of the P to 
the TM conforlnation can be detected by 
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the blue shift of the en~ission of fluorescent 
groups attached to single Cys residues in- 
troduced into TH8 or TH9, such as residue 
C356 ( 7 ) .  TH8 and TH9 are hydrophobic 
helices that become buried in the TI\[ con- 
fornlation (7-9). 

At low pH, the addition of b o ~  m e  semln 
albumin (BSA). human serunl albumin (HS4). 
a-lactalbumin. aponlyoglobin, or diphtheria 
toxin A chain to T donlain bound in the P 
confol~nation to dioleoylphosphatidyIglyc- 
erol (DOPG)~dioleoylpl~ospl~atidylcl~oline 
(DOPC) model lnernbranes induced a blue 
shift in the fluorescence of bimane attached 
to CX6 (Fig. 1A). Below pH 5 these added 
proteins have ~nolten globule (MG)-like con- 
fo~~nations, which exhibit some degree of 
pal-tial unfolding and increased hydrophobic- 
ity (4, 10--12). In contrast. no effect on bi- 
Inane fluorescence was observed when pro- 
teins that do not fol-111 an MG-like state [egg 
white lysozyme, ovalbumin, and an anti-dan- 
syl imlnunoglobulin G (IgG)] were added 
(13) (Fig. 1B). 

The ability of HSA to blue shift binlane 
fluorescence was not dinlinished by predi- 
alysis in tubing with a 10,000-kD cutoff and 
could not be induced by an equivalent vol- 
ume of an ultrafiltrate of an HSA solution. 

ha i l :  elondon@cc~ail.sunysb.edu Thus, HSA itself induced the blue shift. 
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Fig. 1, Interaction of membrane-inserted T do- 
main with various proteins. (A) Effect of proteins 
on the wavelength of maximum fluorescence 
emission of membrane-inserted bimane-labeled 
A356C T domain. 8, A chain; 0, BSA; A, HSA; 0, 
apomyoglobin; [I, a-lactalbumin. (B) Same as (A). 
0, IgG; C, lysozyme; 0, ovalbumin. Samples con- 
tained bimane-labeled A356C T domain (1.7 kg/ 
ml) incorporated into small unilamellar vesicles 
prepared by ethanol dilution (7) and composed of 
200 pM DOPGIDOPC (3:7 mollmol) (Avanti Po- 
lar Lipids) at pH 4.5 (7, 22) (total volume, 600 yl) 
to which small aliquots of BSA; horse apomyo- 
globin; bovine milk lactalbumin type I l l ,  Ca2+- 
depleted (Sigma Chemical); HSA; ovalbumin 
(Worthington Biochemical); egg white lysozyme 
(Fluka Chemical); or anti-dansyl lgG (Molecular 
Probes) dissolved in water was added. The purity 
of these proteins was confirmed by SDS gel elec- 
trophoresis. Fluorescence was measured as de- 
scribed (7) 15 min after addition of each aliquot. 
Results shown are averages from two experi- 
ments. Values were reproducible to within 2 1  to 
2 nm in all cases. 

To confirm that a change in T domain st~-t~c- 
ture had occurred, we measured the binding of 
4,4-difluor0-4-bora-3a,4a-diaza-s-indiciiie anti- 
bodies (anti-BODIPY) to T domain carrying a 
BODIPY-labeled Cys residue. The fluores- 
cence of a BODIPY-labeled Cys residue ex- 
posed to the external solution is quenched by 
about half upoli binding of anti-BODIPY (8).  
Binding decreased upon formation of the TIvl 
conformation (Table 1). The proteins that in- 
duced a blue shift in bimane fluorescence also 
inhibited anti-BODIPY binding to BODIPY- 
labeled AlaS6 to C (A356C) T domain (14), 
whereas those proteins that had no effect on 

Fig. 2. Detection of T domain-HSA association 1  20 - - - 1 20 

by energy transfer. (A) Effect of addition of 
rhodamine-labeled HSA on fluorescence of bi- 1  1 ' 08 
mane-labeled A356C T domain at pH 4.1. 3, I 

FIFO fluorescence in the presence of rhoda- I n + 
mine-labeled HSA divided by that in the pres- 1 \ c C B ~  ; 
ence of unlabeled HSA; + ratio of fuores- 0 0 -  + h 1 $ 
cence intensity at 470 nrn relative to that at Q 1 7 0 8 8  E 
455 nm in samples containing unlabeled HSA C K  I- T LL* 

(22). Samples contained 200 pM DOPGIDOPC I ? 6 1 1 -  I 
(3:7 mollrnol) sonicated small unilamellar ves- - C72 

070 1 1 

icles (7) in 167 mM sodium acetate, 6.7 mM 
tris-Cl, 150 mM NaCl (pH 4.1) mixed well with I 

0  60 0 2 4 6 8 1 0  0 8 ,  

a 1- to 1.5-pg aliquot of bimane-labeled HSA (pglmL) 
A356C dissolved in 7 to 15 ul of 20 mM tris-Cl 

bilnane fluorescence had no effect on anti- 
BODIPY binding (Table 1). 

These changes in fluorescence and antibody 
binding could result from the occlusion of T 
domain residues from interaction with solvent 
by bound proteins rather than from deep T 
domain insertion. Therefore, both the depth of 
bimane groups, monitored by quenching of bi- 
mane fluorescence by lipids canying nitroxide 
labels ( 7 ) ,  and the degree of blue shift were 
measured for T domain mutants labeled on var- 
ious single Cys residues within TH8 and TH9 
(Table 2). Residues within these helices (344, 
356, and 361) undenvent a blue shift upon ad- 
dition of HSA [a decrease in the F,,,~F,,, ratio 
(7 )] ,  consistent with their movement into a non- 
polar environment. They also inserted more 
deeply upon addition of HSA, as judged by 
the increased quenching by lipids with a 
deeply buried ilitroxide group (12SLPC), 
relative to that by lipids with a shallow 
nitroxide (TempoPC) (that is, a decreased 
F ,,,,,, ;% ,,,,,,,,, ratio). In contrast, residues 
in the hydropliilic sequences flanking TH8 
and TH9 (322, 378) did not show significantly 
deeper insertion or a blue shift upon addition 
of HSA. Thus, helices TH8 and TH9 mem- 
brane-inserted more deeply upon addition of 
HSA (15). 

To show whether a con~plex forms between 

containing about 250 ~ M ' N ~ c I  (pH 8) (final 40 r 
volume, 800 yl). Bimane emission was mea- l sured (excitation 375 nrn) 1 to 2 rnin after 3- T I 

MG-like proteins and the T domain, we mea- 
sured fluorescence energy transfer from bimane- 
labeled T domain to rhodamine-labeled HSA 
(16). We observed up to 30% quenching of 
bimane fluorescence upon addition of rhodam- . 
ine-labeled HSA (Fig. 2A). There was no 
quenching when we added unlabeled HSA. \t7e 
also found that most quenching induced by 
rhodamine-labeled HSA was abolished 
when unlabeled HSA or other IvlG-forming 
proteins were present with rhodamine-la- 
beled HSA but not when the non-MG pro- 
teins were present (Fig. 2B). Thus, partly 
unfolded HSA and other MG-like proteins 
competed for binding to the T domain. This 
competition would not have been expected 
if quenching were due to HSA bound non- 
specifically to lipid but in the proximity of 
the T domain ( I  7). Finally, we performed 
energy transfer experiments with pure 
DOPC vesicles, in the presence of which 
partial unfolding of HSA is more pro- 
nounced after preincubation with 5 mM di- 
thiothreitol (DTT) (12). In this case, 
quenching by reduced HSA (18.7% 2 
4.5%; n = 3) was significantly stronger than 
that by unreduced HSA (6.7% -C 1.5%). 

We conclude that proteins in an MG-like 
conformation both associate with the T domain 
and trigger its conversion into the TM con- 

I to 12-pl aliquots of HSA in 10 mM tris-CI (pH 
32 - 

8) were added (final pH 4.1). Average values 1 
from three samples and standard deviations I 

are shown. (B) Effect of inclusion of unlabeled = 1 
proteins on energy transfer between rhodam- z L t  
ine-labeled HSA and A356C T domain. Samples 5 
contained 200 p M  DOPGIDOPC (3:7 rnollmol) g 1 
sonicated vesicles with birnane-labeled A356C 16 

T domain (pH 4.1) prepared as described in (A). v, 

A small aliquot of unlabeled protein [I-mglml 6 1 
stock solutions, 0.5 mglml for apomyoglobin, 5 
in 10 mM tris-Cl (pH 8)] containing 16 pg of s t  
anti-BODIPY IgG (23), a-lactalbumin, lysozyme, ! 
ovalbumin, or apornyoglobin or 8 pg of HSA was 
added. Bimane fluorescence was measured be- I 
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fore (to normalize to equal protein concentra- O None HSA Lac A ~ O  I ~ G  Oval LYS 

tions) and after 3.2 k g  of rhodamine-labeled or Competitor 
unlabeled HSA was added (from I-mg/ml stocks 
in tris-CI). % quenching = [ I  - (fluorescence in sample with rhodamine-labeled HSA)/(fluorescence in 
sample with unlabeled HSA)] X 100. Average values t SD from three samples are shown. Lac, 
a-lactalbumin; Apo, apomyoglobin; Oval, ovalbumin; Lys, lysozyme; IgG, anti-BODIPY IgG. 
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Table 1. Exposure of BODIPY-labeled A356C to 
external solution. Samples were prepared at pH 
4.1 as described in Fig. 1, with or without 5 k g  of 
HSA, BSA, A chain, apomyoglobin, or lactalbumin, 
or 10 k g  of ovalbumin, anti-dansyl IgG, or ly- 
sozyme, dissolved in water. % quenching = {I - 
[BODIPY fluorescence after addition of a 2 0 - 4  
(about 160 kg) aliquot of anti-BODIPYIBODIPY 
fluorescence before antibody addition]} X 100 (7, 
8, 23). % inhibition = [ I  - (% quenching in the 
presence of protein shown/% quenching with T 
domain alone)] X 100. Averages 2 SD from four 
samples are shown. 

Addition 
Quenching by Inhibition of 
anti-BODIPY antibody binding 

None 
Ovalbumin 
Lysozyme 
IgG 
a-Lactalbumin 
A chain 
Apomyoglobin 
BSA 
HSA 

formation. These interactions suggest a 
translocation mode! in which the T domain 
recognizes the A chain when the latter is in 
a partly unfolded, hydrophobic MG-like 
state. The T domain may act like a trans- 
membrane chaperone, forming a "sticky 
pore" that binds a hydrophobic surface on 
the A chain and helps to maintain it in an 
unfolded state during translocation. Thus, 
the partly unfolded hydrophobic conforma- 
tion of the A chain would function to allow 
its interaction with the T domain rather 
than, or in addition to, its interaction with lipid. 

This behavior could allow translocation to 
proceed by a series of transient association- 
dissociation events between T domain and A 
chain without requiring the T domain to rec- 
ognize a specific amino acid sequence (18). 
The observation that introducing disulfide 
bonds in the A chain can stop translocation at 
an intermediate stage (4, 5 )  is consistent with 
such a multistep translocation process. Further- 
more, the apparently weak nature of T domain 
interaction of A chain relative to that with other 
MG proteins (Fig. 1A) is consistent with the 
requirement of efficient trallslocation for rap- 
id dissociation as well as association (19). 

It is also possible that the T domain is 
representative of other proteins that act as 
transmembrane chaperones and may illustrate 
a mechallism that is used in other protein 
translocation processes. In addition, the struc- 
tural similarity between T domain and the Bcl 
protein family, which has an important role in 
apoptosis, is intriguing (20), as it suggests 
that there could be a similar basis for their 
recognition of other proteins. In any case, T 
domain behavior may suggest new approach- 
es for using diphtheria toxin to deliver pro- 
teins into the cell cytoplasm (21). 

Table 2. Effect of HSA on depth and emission of bimane-labeled T domain residues. T domain mutants 
with Cys at the numbered residue were prepared as described (7). Samples contained vesicles composed 
of 200 pM DOPGl(D0PC i 15% nitroxide-labeled PC) (3:7 mollmol) in 167 mM sodium acetate, 6.7 mM 
tris-Cl, 150 mM NaCl (pH 4.1) (7) mixed with a small aliquot containing T domain (1 to 1.5 pglml) (final 
pH 4.1). After fluorescence was measured (excitation 375 nm, emission 455 nm), 2.8 k g  of HSA (from 
a I-mglml solution) was added and fluorescence was remeasured after 30 to 60 s. FIFO is fluorescence 
intensity in vesicles containing 15% nitroxide-labeled PC divided by that in vesicles lacking nitroxide- 
labeled PC. Averages of quadruplicate experiments ( iSD)  are shown. Because the maximal formation of 
the deep conformation appears to be 50% (8), values corrected to 100% deep conformation are shown 
in parentheses. These were calculated by the formula FIFO ,,,, con,,,,,, = [ ( I  + n)ln] 
[FIF, _ ,,, - [1/(1 + n)]FIFo ,,,I, where n = [2F0 + ,,, - Fo HsA]/Fo ,,, (derivation not shown). 
F12s,pcIFTemp,pc is the ratio of corrected FIFO values. F4,01F,55 (see Fig. 2) was measured in Fo samples. 

Mutant FTernpoPCIFO F, 2SLPCIFO F,2SLPC1FTempoPC F4701F455 

322 0.60 i 0.02 0.71 ? 0.04 1.18 1.31 
322 + HSA 0.64 i 0.03 (0.67) 0.73 i 0.04 (0.75) 1.12 1.29 
344 0.59 i 0.01 0.78 i 0.09 1.32 1.43 
344 + HSA 0.47 i 0.005 (0.43) 0.56 i 0.02 (0.48) 1.11 1.10 
356 0.47 i 0.01 0.64 t 0.08 1.36 1.35 
356 + HSA 0.56 i 0.03 (0.61) 0.61 i 0.07 (0.59) 0.97 1.11 
361 0.54 i 0.04 0.61 i 0.03 1.12 1 .OO 
361 t HSA 0.53 i 0.03 (0.53) 0.49 i 0.02 (0.45) 0.85 0.95 
3 78 0.50 i 0.01 0.55 F 0.02 1.10 1.35 
378 + HSA 0.57 i 0.03 (0.65) 0.67 i 0.05 (0.80) 1.23 1.39 
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Thus, the possibility that fusion of small unilamellar 
vesicles (SUV) into LUV by MC proteins affected T 
domain conformation was of concern.,However, al- 
though Sepharose 4B-CL size fractionation of sam- 
ples containing SUV t o  which T domain and apomyo- 
globin were added indicated some vesicle fusion (or 
aggregation), T domain molecules remaining in SUV- 
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shift in bimane fluorescence characteristic of the TM 
state (data not shown). 
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remove free rhodamine. The absorbance of the HSA- 
containing fractions [ I  mg lml  by Coomassie assay 
(Pierce Chemical)] indicated labeling at about two  
rhodamines per HSA wi th E,,, = 93,000 cm-' M-'. 
This was of concern because MC proteins bind to lipids 
at low pH (1 1). The absence of nonspecific quenching 
was confirmed by experiments that showed no signifi- 
cant energy transfer from a membrane-inserted, bi- 
mane-labeled polyleucyl peptide [ j .  Ren, S. Lew, Z. 
Wang, E. London, Biochemistry 36, 10213 (1997)l to 
rhodamine-labeled HSA (data not shown), i t  is also 
noteworthy that addition of unlabeled MC proteins did 
not result in dissociation of the rhodamine-labeled HSA 
from the membrane (data not shown). 
Comparing the sequence of the A chain t o  that of 
other proteins that affect T domain revealed no 
strong similarities (data not shown). 
These experiments have not defined the maximum 
degree of unfolding (or the minimum) that would still 
allow recognition by the T domain. In this regard it is 
interesting that we have found that a 25-residue 
polyalanyl polypeptide that is only partly helical in 
solution [L.-P. Liu, S.-C. Li, N. K. Coto, C. M. Deber, 
Biopolymers 39, 465 (1996)] can trigger the P t o  TM 
conformational change. 
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