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T cell lines (H9 and CEM). 
Nitrosylation of immunoprecipitated pro- 

teins was measured by photolysis-chemilumi- 
nescence (7). The concentration of NO detected 
in caspase-3 immunopxtcivitates (21 + 4 nM, - 
mean k SEM, n = 38) was high& than the NO 
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unknown if protein S-nitrosylation/denitrosylation is a component of signal groups from S-nitrosothiols (SNOs) (7), re- 
transduction cascades. Caspase-3 zymogens were found to be S-nitrosylated on duced the NO content to control wncentmtions 
their catalytic-site cysteine in unstimulated human cell lines and denitrosylated (Fig. 2A). Nitric oxide groups displaced in this 
upon activation of the Fas apoptotic pathway. Decreased caspase-3 S-nitrosy- manner from S-nitrosylated recombinant 
lation was associated with an increase in intracellular caspase activity.  as 
therefore activates caspase-3 not only by inducing the cleavage of the caspase 
zymogen to its active subunits, but also by stimulating the denitrosylation of 
its active-site thiol. Protein S-nitrosylation/denitrosylation can thus serve as a 
regulatory process in signal transduction pathways. 

Programmed cell death, or apoptosis, must be 
tightly regulated in order to ensure appropriate 
cell survival. Nitric oxide (NO) and related mol- 
ecules provide one such level of regulation by 
inhibiting apoptosis in many cell types (1-3). 
Recent studies suggest that this inhibition is 
achieved, at least in part, by S-nitrosylation of 
the active-site cysteine of caspases, a family of 
cysteine proteases that execute the death pro- 
gram (24). In particular, it has been shown that 
NO synthase (NOS) activity can lead to caspase 
inhibition by a mechanism independent of cy- 
clic guanosine monophosphate, that caspases 
can be S-nitrosylated by NO donors in cellular 
and in vitro systems, that the S-nitrosylation 
takes place solely on the activesite cysteine, 
and that this modification inhibits caspase activ- 
ity in a reversible manner (24). However, the 
biological significance of these observations is 
unclear in the absence of a demonstration that 
caspases are in fact S-nitrosylated endog- 
enously. Furthermore, it is not known whether 
protein S-nitrosylation/denitrosyIation serves as 
a component of apoptotic or other signaling 
pathways. 

To address these issues, we immunoprecipi- 
tated caspase3 from three different human B 
and T cell l i e s  that express NOS (Fig. 1A) (5). 
Caspase-3 was efficiently immunoprecipitated 
with its specific antibody, but not with control 
antibody (Fig. 1B). Silver stains revealed that 
associated proteins did not significantly con- 
taminate the caspase immunoprecipitates. In 
particular, the 32-kD unprocessed casp-3 zy- 
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mogen and a previously described 29-kD pro- 
cessing intermediate (6), which we identified 
with two antibodies to caspase-3 and which in- 
creased with other processed forms of caspase 
following Fas stimulation, were the only pro- 
teins specifically precipitated by caspase-3 an- 
tibody (Fig. 1C). Quantitative analyses indicat- 
edthat31 +7nM(rnean? SEM,n = 19)of 
caspase3 was immunoprecipitated (5). Similar 

caspase-3 in vitro formed &trite in solution (8). 
In an additional series of 22 immunoprecipi- 
tates, 16 produced nitrite following HgCl, treat- 
ment (7). Therefore, the NO detected in 
caspase-3 immunoprecipitates appears to be d e  
rived fiom SNO bonds. Taken together with 
studies in vitro that show that caspases are 
nitrosylated on a single cysteine (2), these re- 
sults indicate that a significant proportion of 
caspase-3 is S-nitrosylated intmcellularly. 

Imrnunoprecipitates of caspase-8, which as- 
sociates with Fas, also contained NO groups. 
However, the NO content was only slightly 
higher than that of control immunoprecipitates, 
and the differences did not reach statistical sig- 

results were obtained in two additional human nificance, perhaps because the concentration of 
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Jurkat cells were analyzed on a silver-stained poly- 14 
acrylamide gel. Various concentrations of bovine se- 
rum albumin (BSA) were used to  quantitate the 
amount of immunoprecipitated protein. Immuno- 
globulin heavy and light chains are indicated. Both the unprocessed caspase-3 zymogen and a 
29-kD caspase-3 processing intermediate lacking the prodomain were immunoprecipitated by 
the caspase-3 antibody (Casp-3). Molecular weights are indicated on the right. The gel is 
representative of 18 separate experiments in four different cell lines. 
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caspase-8 in the immunopretipitates was very 
low (<5 nM). Therefore, we were unable to 
establish whether caspase-8 or an associated 
protein is S-nitrosylated intracellularly. 

To determine if caspase-3 is S-nitrosylated 
endogenously on its active-site cysteine, 
MCF-7 cells [which do not express caspase3 
(9)] were transiently or stably transfected with 
plasmids expressing wild-type caspase-3 or a 
caspase-3 mutant in which the catalytic-site 
cysteine is replaced by an alanine (10, 11). 
Wild-type and mutant procaspase-3 were im- 
munoprecipitated from the transfected cells, 
and the level of S-nitrosylation was measured 
by photolysischemiluminescence. The NO 
content of the wild-type caspase-3 immunopre- 
cipitates was consistently higher than that of the 
mutant immunoprecipitates (Fig. 2B), although 
equal or lower amounts of wild-type caspa& 
were immunoprecipitated from transfected cells 
(Fig. 2D) (8). Moreover, the molar SNO: 
caspase ratio in MCF-7 cells (Fig. 2, B and C) 
was similar to that found in human lymphocyte 
cell lines. We athibute the background signals 
in control immunoprecipitates (IgG2a or mu- 
tant caspase-3) to other basally nitrosylated pro- 
teins and to the small amounts of NO,, which 
we detected in the cell lysates of samples used 
for immunoprecipitations (5, 8). Taken together 
with previous studies (2, 3), these data indicate 
that caspase-3 S-nitrosylation takes place on its 
active-site cysteine. 

Because caspase S-nitrosylation is inhibit* 
ry (24),  yet Fas promotes caspase activation, 
we reasoned that Fas induces caspase deni- 
trosylation. To test this hypothesis, we immu- 
noprecipitated caspase-3 from 10C9 (n = 7) 
and CEM (n = 6) cells that had been stimulated 
with Fas agonist antibody (12). Nine of 13 
immunoprecipitates contained SNO at time 
zero; in the& nine, SNO levels decreased an 
average of 77% (P < 0.0005) approximately 
1.5 to 2 hours after Fas cross-linking (Fig. 3). 
Silver stains and protein immunoblots revealed 
that caspase levels were not changed signifi- 
cantly by Fas over this interval and that only a 
minority of caspase-3 zymogen had been 
cleaved to its active subunits (Fig. 3, A and B). 
Thus, in 10C9 and CEM cells, Fas activation 
decreased the S-nitrosylation of at least a subset 
of caspase zymogen before it was processed to 
its active form. Cleavage of zymogen before 
denitrosylation is not, however, precluded by 
these data. 

The decline in S-nitrosylated caspase-3 
could have resulted from either a decrease in 
the rate of S-nitrosylation or an increased rate 
of denitrosylation. To distinguish between these 
possibilities, we analyzed the extent of 
caspase-3 S-nitrosylation in cells grown in the 
presence or absence of the NOS inhibitor, N-G- 
monomethyl-L-arginine (L-NMA) (13). Inhibi- 
tion of intracellular NO production by L-NMA 
for 2 hours did not measurably decrease 
caspase-3 S-nitrosylation, although clear de- 

creases were noted by 24 to 48 hours (8). Thus, 
the decline in caspase-3 S-nitrosylation 1.5 to 2 
hours after Fas activation is evidently the result 
of an increase in denitrosylation activity. In 
support of this conclusion, we found no corre- 
lation between the NO content of,cell lysates 
and the SNO content of immunoprecipitates 
from these lysates, suggesting that changes in 
whole-cell NOS activity do not account for the 
changes in caspase S-nitrosylation (n = 20, R2 
= 0.08). 

S-Nitrosylation of recombinant caspase in- 
hibits the enzyme in cell-free systems (2-4). To 
determine if caspase S-nitrosylation was func- 
tionally coupled to intracellular caspase activi- 
ty, we measured caspase-3-like activity in ly- 
sates of cells grown in the presence or absence 
of L-NMA for 24 to 48 hours. Although L- 
NMA reduced caspase S-nitrosylation (8), this 
reduction was not associated with an increase in 
caspase-3-like activity (Fig. 4A) or poly(ADP- 

ribose) polymerase cleavage (8), suggesting 
that decreased S-nitrosylation alone is not suf- 
ficient to activate caspases. However, these 
lengthy treatments with L-NMA increased Fas- 
induced caspase activation within 2 hours of 
cross-linking (Fig. 4A) (14). Thus, caspase ac- 
tivation seems to require both denitrosylation of 
the active-site cysteine and cleavage of the zy- 
mogen. After longer periods of Fas activation 
(that is, more than 2 hours), L-NMA no longer 
increased Fas-induced caspase activity (8), 
probably because Fas alone had l l l y  induced 
the denitrosylation of caspase at these time 
points (Fig. 3, A and B). In addition, a nitric 
oxide donor completely suppressed Fas-in- 
duced caspase-3 activation (14), consistent with 
our hypothesis that caspase-3 S-nitrosylation 
inhibits its intracellular activity (Fig. 4B). 

Our results suggest that NO-related activ- 
ity helps maintain caspase-3 zymogen in an 
inactive form and that this regulation is 
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pretreated with H e  (&spase-3 IP+Hg). NO released from the control lgC2a immunoprecipiie (Control 
IP) and from the 62.5 nM CSNO standard are shown for comparison. The data are representative of 9 (IgCZa), 
38 (caspase-3), and 3 (HgCIJ separate experiments in f i i  different cell lines (B) S-nitrosybtion;f & 
active-site cysteine. MCF-7 cdls were transiently (Exp 1, 2) or stably (Exp 3, 4) transfected with plasmids 
expressing wild-type procaspase3 (Wild-type) or procaspase-3 in which the catalytic-site cysteine was 
mutated to an alanine (Mutant) or vector alone. NO content of wild-type and paired mutant irnmunopre- 
a p i i e s  (IP) in four separate experiments (Exp) is shown. (C) NO signals from wild-type and mutant 
caspase-3. Rmnr data generated by photolysishemiluminesence from representative irnm~nopreci~tates of 
stable dones expressing wild-type and mutant caspase-3, were f i e d  to a smoothed line by Kaleidagraph 3.0. 
The NO signals in wild type and mutant correspond to  - 15 nM and - 0 nM, respectively. (D) Caspase-3 
in immunoprecipitates from transfected MCF-7 cells. Protein immunoblot (right) and silver stain (left) 
of wild-type and mutant caspase-3 in the immunoprecipitates from transfected cells used in Exp 2 
(right) and Exp 4 (left) in (6). The silver stain corresponds to  -20 nM caspase-3. 
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Fig. 3. Decreased caspase-3 S-nitrosylation after Fas activation. (A) Caspase-3 deni- 
trosylation (photolysis). Caspase-3 was immunoprecipitated from 10C9 cells which had 
been grown for 2 hours in the presence of Fas agonist antibody (50 nglml; Casp-3 + 
Fas) or equal concentrations of isotype matched IgM control (Casp-3). NO content of 
the immunoprecipitates and the baseline (H20), as determined by photolysis- 
cherniluminexence, is shown on the left. NO chemilurninexence (signal) is expressed 
in arbitrary units over time (minutes of analysis). Raw data were fitted to  a smoothed 
line by Kaleidagraph 3.0. Caspase-3 signal corresponds to  18 nM NO (solid line); 
Caspase-3 + Fas corresponds to  8 nM NO (dashed line); H20 = 0 nM (dotted line). 
Caspase-3 protein immunoblots of the immunoprecipitates used in this experiment are 
shown on the right. The bands corresponding to caspase-3 zymogen and cleaved active 
subunits are identified. (B) Caspase-3 denitrosylation (chemical-reduction). The exper- 
iment described above was done with 10C9 cells that had been stimulated for 1.5 hours 
with Fas agonist antibody. NO content of caspase-3 was measured by chemical- 
reduction chemiluminescence (signal over time). Raw data were fitted to  a smoothed 
Line by Kaleidagraph 3.0. The signal difference between caspase-3 (solid line) and 
caspase-3 plus Fas (dashed line) corresponds to  approximately 19 nM NO and the 

reduction by' Fas is more than 80% relative 'to background buffer (dotted line). 
Silver stains of the imrnuno~recioitates used in this ex~eriment at times indicated 
following Fas stimulation (iimej, are shown on the 'right Bands correspond to 
caspase-3 zymogen (caspase-3) and immunoglobulin heavy and light chains. Molecular 
size markers are shown on the Left. (C) S-nitrosylation-denitrosylation of caspase-3. The 
NO content of untreated caspase-3 immunoprecipitates (Casp-3), caspase-3 immuno- 
precipitates derived from cells stimulated with Fas agonist antibody (Casp-3 + Fas), or 
caspase-3 immunoprecipitates pretreated with HgCI, (Casp-3 + Hg) was determined. 
The data are expressed as percent of constitutive caspase-3 nitrosylation in paired 
experiments and represent the mean of two (Casp + Hg), or nine (Casp-3 + Fas) 
separate experiments 2 SEM. Asterisk indicates P < 0.0005 versus caspase-3, paired t 
test. 
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Fig. 4. NO inhibits caspase->like activity. (A) In- , 3.0 - 

tracellular NO production inhibits caspase-3-like 
activity. The 10C9 or jurkat cells were Left untreated 
(control), or were grown in the presence the NOS 
inhibitor L-NMA for 24 to  48 hours. L-NMA alone 
had no significant effect on caspase activity. The 
control and L-NMA-treated cells were then cultured 
for 1 hour in the presence or absence of Fas agonist 
antibody (100 nglml, clone CH-11, Upstate Bio- 
tech). Caspase-3-like activity in cytosolic extracts 
prepared from these cells was measured with Ac- 
DEVD-pNA (200 yM) as described (4). Absorbance 
of released pNA was read at 405 nm at the indicat- o ~ O Z O M ~ ~ W S O ' I O  
ed times. The results are expressed as absorbance nme iminb . . 
per milligram of protein, and'represent the mean + 
SEM of three separate experiments. Asterisk indi- 
cates P < 0.05 versus Fas, n = 3, paired t test. 
Similar results were obtained using PARP cleavage 
as the assay for caspase activity (8). (8) Nitrosothiol 
inhibits caspase-3-like activity. The experiments de- 
scribed above (A) were done with 10C9 and CEM 
cells grown in the presence of Fas agonist antibody 
(Fas), equal concentrations of isotype-matched IgM 
control (IgM), or Fas agonist antibody and 500 y M  of 
the NO donor S-nitrosopenicillamine (Fas+SNO). The 
results are expressed as absorbance per milligram of 
protein and are the mean + SEM of three separate 
experiments in two different cell lines. o 20 40 80 80 l w  120 
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achieved by S-nitrosylation of the catalytic- tive-site thiol. Thus, protein S-nitrosylationl 
site cysteine. Upon activation of the Fas ap- denitrosylation appears to regulate the Fas 
optotic pathway, caspase-3 zyrnogens were apoptotic pathway. The hc t ion  of ion chan- 
not only cleaved to their active subunits, but nels, G proteins, respiratory proteins, tran- 
also denitrosylated, thereby freeing the ac- scription factors, and multiple enzymes can 
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be altered by S-nitrosylation (15, 16). The 
finding that this protein modification may be 
dynamically regulated and coupled to cell- 
surface signals has potential implications for 
other signaling pathways and cellular control 
mechanisms. 
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Land plants are sessile and have developed sophisticated mechanisms that allow 
for both immediate and acclimatory responses to changing environments. 
Partial exposure of low light-adapted Arabidopsis plants to excess light results 
in a systemic acclimation to excess excitation energy and consequent pho- 
tooxidative stress in unexposed leaves. Thus, plants possess a mechanism to 
communicate excess excitation energy systemically, allowing them to  mount 
a defense against further episodes of such stress. Systemic redox changes in the 
proximity of photosystem II, hydrogen peroxide, and the induction of antiox- 
idant defenses are key determinants of this mechanism of systemic acquired 
acclimation. 

Large increases in light intensity for a short transduced by photosystem I1 (PSII). This im- 
period can be beneficial for photosynthetic balance [excess excitation energy (EEE)] can be 
yields in low light (LLtadapted plants (1). ' generated by excess light (EL) or chilling or 
However, if these conditions persist. an imbal- both and can be strongly enhanced by a combi- 
ance can be created such that the energy ab- nation with other factors such as rapid and large 
sorbed through the light-harvesting complex is increases in temperature and limitations in nu- 
in excess of that which can be dissipated or tritional and H,O status (1-8). 
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