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ing that a cellular repair protein or proteins are 
required for this reaction may have practical 
ramifications. Such proteins represent a previ­
ously unrecognized set of targets for inhibition 
of this early step in virus replication. 
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harm neurons by promoting excitotoxic in­
jury (2). This detrimental effect of tPA may 
be mediated by plasmin, the main product 
of tPA action in thrombolysis, because not 
only tPA-null but also plasminogen-null 
mice are resistant to excitotoxic injury (3). 

Although excitotoxicity is a key mech­
anism of pathologic neuronal death in many 
cases (4), neurotoxicity mediated by en­
dogenous zinc translocation has recently 
been shown to be another major mechanism 
of selective neuronal death in global isch-
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emia and seizures (5). In transient global 
cerebral ischemia and induction of kainate 
seizures, zinc accumulation was observed 
in degenerating neuronal cell bodies (6) ,  
and an extracellular zinc chelator injected 
into cerebrospinal fluid (CSF) markedly re- 
duced both zinc accumulation and neuronal 
death (7). 

Exposure of cortical cultures to 35 pM 

Fig. 1. tPA attenuates Zn 
toxicity but not calcium- 
overload excitotoxicity. (A 
to D) Phase-contrast pho- 
tomicrographs of sister 
cortical cultures after 24 
hours of exposure to 35 
pM zinc alone A) or with 
addition of tPA I 10 CLglml) 
(B), and to 30 pM NMDA 
alone (C) or with addition 
of tPA (D). Scale bar, 50 
pm. (E) Data represent 
LDH rdease (mean 2 SEM, 
n = 4) in cultures, 24 
hours after 10 min of ex- 
posure (squares) or after 
24 hours of exposure (cir- 
cles) to indicated concen- 
trations of zinc without 
(open symbols) or with 
addition of tPA (10 pgl 
ml) (solid symbols). In 
both conditions, tPA was 

zinc for 24 hours resulted in widespread neu- 
ronal death the next day (Fig. 1A) (8, 9). 
Addition of P A  (10 pglml) completely 
blocked the zinc-induced cell death (Fig. 1B). 
In contrast, neuronal death induced by 24 
hours of exposure to 30 pM N-methyl-D- 
aspartate (NMDA) was not attenuated by tPA 
(Fig. 1, C and D). The cytoprotective effect of 
P A  was seen throughout the zinc concentra- 

tion range tested, in both the 24-hour and 
10-min exposure paradigms (8), as quantita- 
tively assessed by the lactate dehydrogenase 
(LDH) release assay (10) (Fig. 1E). tPA com- 
pletely blocked not only neuronal death at 
lower zinc concentrations but also additional 
astrocytic cell death at higher concentrations. 
In contrast to this protective effect against 
zinc toxicity, tPA did not alter excitotoxic 

present in culture medium from the beginning of zinc exposure until the LDH assay. Asterisks denote difference from zinc alone (p < 0.05, two-tailed t test). 
(F) LDH release in cultures (mean 2 SEM, n = 4) after 24 hours of exposure to indicated concentrations of glutamate, NMDA, or kainate without (open 
symbols) or with addition of tPA (10 pglml) (solid symbols). 

Fig. 2. The site of tPA protection - tox~n alms 
may be downstream of zinc influx, + LPA 

probably somewhere in the oxida- ,W 
tive injury cascade. (A to C) Fluo- ,o 1 60 rexence photomicrographs of TSQ- 2 
stained cortical cultures, immedi- @ 2 40 
ately after 10 min of exposure to 40 

HBSS alone (A) or to  300 pM zinc 20 9 20 

without (B) or with addition of tPA 0 
(10 pg/ml) during the zinc exposure CTRL co port FO yq BSO TPEN STSP Zinc *FA Fe + P A  
(C). Scale bar, 50 pm. (D) LDH re- 
lease in cultures 24 hours after 10 min of exposure to 300 pM zinc photomicrographs of sister cultures stained with DCF 18 hours after 
alone (CTRL) or with addition of tPA (10 pg/ml) both during and after 10 min of exposure to  300 pM zinc alone (F) or with addition of tPA 
(Co) or on1 after (Post) zinc exposure. Asterisks denote difference (10 pg/ml) (G). Scale bar. 50 bm. (H) Bars denote increases in the 
from CTRL & < 0.05, two-tailed t test with Bonferroni correction for membrane thiobarbituric acid-reactive substances (TEARS; mean + 
two comparisons). (E) Bars represent LDH release (mean + SEM, n = SEM, n = 3) over that of sham wash controls, after 14 hours of 
4) in cultures after 24 hours of exposure to 100 pM Fe3+ (Fe), 100 pM exposure to 35 pM zinc or 100 pM Fe3+ (Fe), alone or with addition 
H,O,, 1 mM BSO, 2 p M  TPEN, or 100 nM staurosporine (STSP) alone of tPA (10 pg/ml). Asterisks denote difference from zinc or Fe3+ 
or in the presence of tPA (10 pg/ml). Asterisks denote difference from alone, respectively (p < 0.05, two-tailed t test with Bonferroni 
toxin alone (p < 0.05, two-tailed t test). (F and C) Fluorescence correction for two comparisons). 
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neuronal death induced by 24 hours of expo- 
sure to 3 to 300 pM NMDA, kainate, or 
glutamate (Fig. IF). 

Because zinc neurotoxicity is triggered 
by the influx of zinc into neurons (1 I), we 
examined the possibility that tPA attenu- 
ates the toxic zinc influx. However, visual- 
ization of zinc influx with a zinc-specific 
fluorescent dye, 6-methoxy-8-quinolyl-p- 
toluenesulfonamide (TSQ) (IZ), revealed 
no difference in zinc accumulation in cul- 
tured neurons exposed for 10 min to 300 
pM zinc with or without the addition of 

* - Toxin alone 

Zinc NMDA Kainate 

I 2 O  1 B 

Zinc + tPA ++ PA1 

Zinc +EGF +tPA ++H89++EGF 

Fig. 3. Plasmin production or other proteo- 
lytic effect may not be the protective mech- 
anism. (A) LDH release (mean 2 SEM, n = 4) 
in  cultures after 24 hours of exposure t o  30 
p M  zinc, 30 p M  NMDA, or 100 p M  kainate 
alone or in the presence of plasmin (100 
pglml). Plasmin potentiated zinc-induced cell 
death selectivelv: lower concentrations (1 t o  
30 pglml) of pl&min did not alter zinc i e u -  
rotoxicity. (B) LDH release (mean 2 SEM, n = 
4) in cultures after 24 hours of exposure t o  
35 p M  zinc alone or with addition of tPA (10 
pglml) (+tPA) or tPA plus PAI-1 (30 pglml) 
(++PAI). (C) LDH release (mean 2 SEM, n = 
4) in  cultures exposed for 24 hours t o  35 p M  
zinc alone or with addition of ECF (1 pglml) 
(+ECF), tPA (10 pglml) (+tPA), tPA plus 3 
p M  H-89 (++H89), or tPA plus ECF (1 kg/ 
ml) (++ECF). Asterisks denote difference 
from respective controls (p < 0.05, two- 
tailed t test with Bonferroni correction for 
multiple comparisons). 

tPA (Fig. 2, A to C). Furthermore, if the 
protective effect of tPA were based on the 
reduction of zinc influx, then tPA given 
after the 10-min zinc exposure should not 
be protective, as zinc influx cannot occur 
after zinc washout. However, tPA given 
after zinc exposure was as protective as 
tPA given both during and after zinc expo- 
sure (Fig. 2D). 

Previously, we showed that zinc neuro- 
toxicity is mainly mediated by oxidative 
stress in cortical culture, because it is ac- 
companied by increases in lipid peroxida- 
tion and cytosolic 2,7-dichlorofluorescein 
diacetate (DCF) fluorescence, and is 
blocked by antioxidants (8). tPA attenuated 
oxidative stress-related neuronal death in- 
duced by exposure to Fe3+, H202, or a 
y-glutamyl-cysteine synthetase inhibitor, 
buthionine sulfoximine (BSO) (13). On the 
other hand, protein synthesis-dependent 
but antioxidant-insensitive neuronal apo- 
ptosis induced by staurosporine or 
N,N,N1,N'-tetrakis(2-pyridylmethy1)ethyl- 

enediamine (TPEN) (14) was not altered by 
addition of tPA (Fig. 2E). Consistent with 
its antioxidative effect, tPA markedly at- 
tenuated DCF fluorescence (Fig. 2, F and 
G) and membrane lipid peroxidation (Fig. 
2H) increased by zinc exposure (15). 

By cleaving plasminogen, tPA produces 
plasmin, the final effector protease in the 
thrombolytic cascade (16). Plasmin aggra- 
vated cell death induced by mild zinc ex- 
posure (3) but did not alter NMDA- or 
kainate-induced neuronal death (Fig. 3A). 
Intriguingly, the protective effect of tPA 
(10 pglml) was not reversed by excessive 
amounts (30 pg/ml) of plasminogen activa- 
tor inhibitor-1 (PAI-1) (1 7), indicating that 
the protection was unlikely mediated by its 
proteolytic action (Fig. 3B). tPA has an 
epidermal growth factor (EGF)-homolo- 
gous domain (18) and induces endothelial 
cell proliferation by activating protein ki- 
nase A (PKA) (19). However, EGF did not 
attenuate zinc-induced cell death, nor did 
the PKA inhibitor H-89 or EGF reverse the 

Fig. 4. lntracerebroventricular tPA injection 
attenuates kainate seizure-induced neuronal 
death in  the hippocampus. (A) Time course 
of seizure intensity after kainate injection. 
Data denote seizure scores (23) (mean f 
SEM. n = 31 after intra~eritoneal kainate 
injection (10'mgIkg) in iats given 3 p1 of 
saline or tPA in saline (1 mglml) into lateral 
ventricle (icv), or tPA (3 mgIkg) as bolus into 
tail veins (id. No difference in seizure scores 
was noted among conditions. (B to  D) Pho- 
tomicrographs of uesyl violet-stained hip- 
pocampal CAI renions of rats with iniection 

of icv saline (b), icv tPA (C), or iv tPA (D), taken 24 hours'after the k inate injection. N i t e  the 
marked sparing of CAI pyramidal neurons relative t o  severely injured ones in (B) and (D), as 
compared with (C). Scale bar, 100 prn. (E) Bars denote acid fuchsi+positive neurons (mean + SEM, 
n = 3) counted in three sections (10 p,m thickness, 800 p m  apart) of the hippocampus in the above 
conditions. Although iv tPA did not alter kainate seizure-induced neuronal degeneration in the 
hiopocamous, icv tPA markedlv attenuated it Asterisk denotes difference from the others ID < 
0.05, ANOVA with post hoc &dent-~ewrnan-~euls test). 
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protective effect of tPA (Fig. 3C). suggest that they ma! plaq a direct cyto- 13. H. 8. Chow, J .  J. Lynch Ill, K. Rose, D. W. Choi, Brain 

)I-e then examined whether tP.A had pro- protective role in brain i~ljury.  Tlle elucida- Res. 639, 102 (1994); 6. j .  Cwage t  a/., Neuroreport 7, 
93 (1995). tective effects on neuronal death in vivo, tion of targets of the tPX cytoprotecti\e 

14, Y, Koh Exp, Neuroi, 135, 153 (1995); Y, H, 
To  circumvent the potential injury-pro~not- action may proxide insighti into the molec- Ahn, Y, H, Kim, S, H, Hang, J, Y, Koh, ibid, 154, 47 
ing action of plasmin. lve injected tP.4 ( 3  ular cascade of o~idatix-e injury, (1998). 

ul. 1 me 1111 ill salille) directly illto the CSF 15. H.  Ohkaiva, N .  Ohishi, K. Yagi, Anal. Biochem. 95, - 
of adult rats (30 ) .  In CSF. plasnlinoge~l 
collcelltratioll is reportedly very lo\?- (-71 ) .  

For comparison. other rats mere si\.en sa- 
line alone ( 3  I J . ~ )  into lateral ventricles. or 
tPA (3  nlg kg body weight) intra~.enously 
( i v )  ( 2 2 ) .  In all aninla1 groups. seizure in- 
tensity x a s  identical and reached stage 3 
and 3 of the Zhang rr (11. classification (-73) 
1 hour after the lcainate injection (Fig. 1.A). 
Examination of brain sections taken 24 
hours after lcainate illjectioll revealed that 
intracerebroventriculnr ( icv)  i11.jection of 
tPX marltedly attenuated kainate seizure- 
induced death of hippocampal neurons 
(CAI -3 ) .  whereas icv saline or iv tP.A 
injection did not (Fig. 1. B to D )  ( 3 4 1 .  
Counting nulllbers of acidophilic neurons 
in hippocampus (CAI -3 )  re\-ealed greater 
neuronal death in saline-ir~jected co~ltrol  
and iv tPA-injected rats than in icy tPX- 
illjected rats (Fig,  3E). 

\I'e observed the neuroprotective effect 
of tPX against zinc-induced and other os i -  
datil e neuronal death. but not against ex- 
citotoxic or apoptotic neuronal death in 
cortical culture, Because zinc neurotosicity 
is nlaillly mediated by oxidative injury (8) 
and tPX also attenuated other oxidative 
neuronal injury in our study. tPA may act at 
certain common steps in the oxidative in- 
jury cascade. Interestingly. our results in- 
dicate that the proteolytic action of tP.A 
may not be the mechanism for its cytopro- 
tecti1.e effect, Although EGF homology and 
PKX actix-ation are potential mechanisms 
of the nonproteolytic effect of tPA (18 .  19) .  
neither EGF nor the PICA inhibitor reversed 
tPA protection. Our results appear to be in 
conflict nit11 the reportzd cytotoxic effect 
of tPX in xi\ o (3 .  3). Hov.ever. this differ- 
ence is lilts11 due to the lack of plasmino- 
gzn in the exposure mediuln. In fact. al- 
though tPX markzdly attenuated z ~ n c  tox- 
icit! in cortical culture, plasnlin potentiated 
it. Another l int  of evidencz supporting this 
scenario is that ths ~iljection of tPX into 
CSF, xhe re  plasminogen is quite 10x3 (31) .  
rsduced zinc illtlus-associated lleurollal 
death in rats subjected to lcainate seizures 
(6, '1. Of note. tP.A injection into CSF did 
not alter the intznsity of seizurzs. \?,hich 
s u g e s t s  that the neuroprotection b j  tP.4 is 
not the result of f i n e r  seizures. By con- 
trast. injzction of tPA into veins v.as not 
protecti\ e ( 2 ) .  

tPA and urokinase-type plasminogen ac- 
tivator a r t  up-regulated after brain ~n ju ry  
( 2 5 ) .  and this has bezn considered a pro- 
i i u r i o u s  21 eilt (3.  3 ) .  Hon  sver, our results 
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