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Fig. 4. (A) Stabilization of AUFl by pro- B AUFl was irnrnunoprecipitated from equal amounts of 

teasome inhibition. HeLa cells at 37°C A \ % 
protein, resolved by SDS-PAGE, and then fluorographed. 

were untreated or treated for 4 hours $ ,* 9 B 
AUFl was immunoprecipitated from equal amounts of 

with 20 p,M MG132 or heat-shocked for 3 oc @ -  G 
c c *  
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hours at 44OC. Equal amounts of lysates ,$ ,$ 4 blotting with antibodies specific to hsp70, hsc70, or 
were resolved by gel electrophoresis and hspl05 (Stressten), elF4C, PABP, or AUF1. Blots were 
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of the brain are quite distinct (3), and visual 
blindness due to partial loss of rod and cone 
photoreceptors is not necessarily associated 
with an attenuation of circadian responses 
to light (2). Collectively, these findings 
have led to speculation that (i) the mamma- 
lian circadian system can maintain normal 
photosensitivity with only small numbers 
of rods or cones; and (ii) the eye contains 
unrecognized photoreceptors that mediate, 
or help mediate, the effects of light on the 
circadian system (4). In the absence of an 
experimental model completely lacking 
rods and cones, distinguishing between 
these alternatives has been problematic. 

Two mouse models have been used pre- 
viously to examine the impact of rod pho- 
toreceptor loss on circadian physiology: (i) 
mice homozygous for retinal degeneration 
(rd/rd) gradually lose all rod photorecep- 
tors but retain normal circadian responses 
to light (5); and (ii) transgenic mice (rdta) 
undergo specific ablation of rod photore- 
ceptors during early development (6) and 
are also circadian photosensitive. The re- 
sponses of rdta mice were about twice as 
great as those of wild-type and rd/rd mice 
of the same genetic background (7). Loss 
of the eyes in both rd/rd and rdta mice 
abolished the effects of light on the circa- 
dian system. Collectively, these results 
showed that rods are not required for cir- 
cadian photoentrainment and that the pho- 
toreceptors mediating these responses are 
ocular. 

Both rd/rd and rdta mice sustain a sec- 
ondary degeneration of cone photorecep- 
tors. However, limited numbers of cones 
remain into old age (6, 8), making them 
strong candidates for the regulation of tem- 
poral physiology. The murine retina con- 
tains two populations of cones, sensitive in 
the green [maximum wavelength (A,,,) = 
508 nm] (9) and ultraviolet (UV) (A,,, = 
359 nm) (10). Both cone classes have been , .  , 
implicated in photoentrainment by action 
spectrum studies (11). Moreover, the iden- 
tification of a fully functional "green" pho- 
topigment (A,,, = 534 nm) within the eyes 
of the blind mole rat (Spalax ehrenbergi) 
provides indirect evidence for the involve- 
ment of cones in circadian regulation (12). 

To determine the impact of cone photo- 
receptor loss on photoentrainment, we used 
mice in which cone photoreceptors were 
ablated by the introduction of a synthetic 
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transgene (cT) (13). This construct consists 
of a portion of the human red cone opsin 
promoter, attached to an attenuated diph- 
theria toxin gene (14). The retinas of these 
mice have normal numbers of rods and a 
substantially reduced number of UV cones 
(>95% lost) and appear to lack green cones 
( < I %  remain in some retinas) (13). Our 
molecular (Fig. 1) (15) and immunocyto- 
chemical analysis (16) of the cl retina con- 
firms these findings. Despite this massive 
insult to cone photoreceptors, cl mice 
showed unattenuated circadian responses to 
monochromatic 509-nm light (Fig. 2A). Bi- 
lateral enucleation abolished the ability of 
cl mice to entrain to a 12 hour light: 12 hour 
dark cycle and to phase shift their circadian 

locomotor rhythm in response to a light 
pulse (17). In view of the loss of green 
cones, these data suggest that green cone 
photoreceptors are not required for pho- 
toentrainment. Moreover, the insensitivity 
of UV cones to 509-nm light (10) suggests 
that a non-cone photoreceptor is involved 
in this process. As rods remain unaffected 
in cl mice, under these circumstances, rods 
might mediate photoentrainment. Although 
previous studies with both rd/rd and the 
rdta mouse models indicate that rod photo- 
receptors are not required for circadian 
photoentrainment (5, 7), our results might 
reflect redundancy of photoreceptor inputs 
to the clock, with both rod and cone pho- 
toreceptor~ providing photic input to the 

Fig. 1. Effect of transgenic abla- 
tion on the expression of photo- 
receptor genes in c l  and rdta/cl 

A %. c 
mice. Northern blot (A through 9 4 9 w b  
C) and RT-PCR (D through F) 74skbW 

detection of mRNA-encoding 
green cone opsin (A and D), UV 44Lmb 

cone opsin (B and E), and rod 
opsin (C and F) in wild-type and 2 3 7 , ~  

transgenic retinas (15). Introduc- 237kbb 

tion of the cl transgene rendered z v l r b b  

green cone opsin mRNA unde- 1 35 kbb (l* 135kbw 

tectable by Northern blot (A) in 
either c l  or rdta/cl genotypes. 
RT-PCR techniques also failed t o  ,, ,, 
amplify a band visible on an 
ethidium bromide-stained aga- 024 I&, 024kbb 
rose gel in either genotype (D). 
The effect of the c l  transgene on 
UV cones was less marked, with 
UV cone opsin mRNA detectable 
in both c l  and rdta/cl mice by 
Northern blotting (B) and RT- 

D / * c  ' "  P .  bP %. c 
PCR techniques (E). Rod photo- SOBbpp 467 bpb 

receptors were unaffected by the 
c l  transgene. By contrast, the 
rdta/cl retina contained no rod opsin transcript (C and F); bp, base pairs. 

Fig. 2. Irradiance-de- A B 
pendent phase shifts of 
circadian locomotor ac- 
tivity (17). (A) Phase 
shifts of locomotor ac- T 

tivity in c l  mice. Phase ; shifts (mean + SEM) of ; 
wild-type and cl mice, 5 Icm 

after exposure to  a de- $ 
1 8 llpj, d 1 

fined iadiance, 15-min 50 x, 
monochromatic light I .. 
(509 nm) pulse deliv- o 
ered at CT16 (n = 6 to  o lx1w3 IXIO-I 5.7~100 

15 animals per geno- IXIOJ IXIO-2 IXIO-1 1~100 1x101 
lnadiance ( I ~ l c m ~ )  

type at each irradi- Inadison @w/cm2) 

ance). There were no 
significant differences between cl or wild-type mice at irradiances that produce either saturating or 
subsaturating phase shifts [two-way analysis of variance (ANOVA): P > 0.051. (B) Phase shifts of 
locomotor activity in rdta/cl transgenic mice. Phase shifts (mean +- SEM) of wild-type and rdta/cl mice, 
after exposure to  a 15-min monochromatic light (509 nm) pulse delivered at 0 1 6  (n = 5 to 7 animals 
per genotype at each irradiance). Both genotypes showed an irradiance-dependent increase in the 
amplitude of phase shifts. However, at an irradiance of 5.7 p,W/cm2, phase shifts were significantly 
enhanced in rdta/cl mice, compared with wild-type mice (two-way ANOVA: P < 0.001; post hoc 
Student-Newman-Keuls tests comparing genotypes at each irradiance: *, P < 0.05). For further 
discussion, see (23). 
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Fig. 3. Histological analysis of serial 
sections from wild-type (A through 
C) and rdta/cl (D through F) retinas 
(75). lmmunocytochemical staining 
failed to  identify rod or cone photo- 
receptors in the retinas of rdta/cl 
mice. Tissue was fixed with Bouins 
(75% picric acid, 25% formalin, and 
5% acetic acid) for 24 hours and 
paraffin-embedded, and 8-ym sec- 
tions were treated with antibodies 
recognizing rod (A and D), rod and 
green cone (B and E), and UV cone 
(C and F) photoreceptors. Visualiza- 
tion was accomplished with ABC 
methods (Vectastain Elite, Vector 
Labs). GCL, ganglion cell layer; IPL, 
inner plexiform layer; INL, inner nu- 
clear layer; ONL, outer nuclear layer; 
IS, inner segments; OS, outer seg- 
ments; and RPE, retinal pigment ep- 
ithelium. Scale bar. 40 pm. 

TI- .. . 

circadian system. Hence, the absence of 
either cell type might be compensated for 
by the presence of the other. To resolve this 
issue, we generated mice that carry lesions 
to both rod and cone photoreceptors by 
introduction of the cl transgene into mice 
heterozygous for the rodless (rdta) trans- 
gene. Immunocytochemical and mRNA 
analyses of rdta/cl mouse retinas (15) indi- 
cate that both rod and green cone photore- 
ceptors and their associated photopigments 
are eliminated from the retinas of these 
mice (Figs. 1 and 3). Despite the absence of 
rods and green-sensitive cones, rdta/cl 
mice show unattenuated circadian phase 
shifts in response to a 15-min monochro- 
matic light (509 nm) pulse of varying irra- 
diance (Fig. 2B). 

These results demonstrate that the mam- 
malian eye contains non-rod, non-cone 
photoreceptors capable of regulating circa- 
dian behavioral responses to light. Pub- 
lished data suggest strongly that these 
receptors use a vitamin A-based photo- 
pigment (1 1, 18). Nonetheless, their molec- 

ular basis has been the subject of con- 
siderable recent speculation (19-22). The 
rdta/cl model provides an opportunity to 
address this issue by determining the spec- 
tral sensitivity of these uncharacterized 
photoreceptors. 
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