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If the fraction of species in  area A that are also found in one-half of that area 
is independent of A, the distribution of species is self-similar and a number of 
observed patterns in ecology, including the widely cited species-area relation- 
ship connecting species richness t o  censused area, follow. Self-similarity also 
leads t o  a species-abundance distribution, which deviates considerably from the 
commonly assumed lognormal distribution and predicts considerably more rare 
species than the latter. Because the abundance distribution is derived under the 
condition of self-similarity, it may be widely applicable beyond ecology. 

Patterns in the distribution and abundance of 
species within a biome are central concerns in 
ecology, providing important information about 
total species richness, the likelihood of species 
extinction under habitat loss, the design of re- 
serves, and the processes that allow species to 
coexist and partition resources (1). A number of 
mathematical functions have been suggested as 
useful for characterizing observed patterns, 
with perhaps the most widely cited, but by no 
means the only plausible, ones being the power 
law form of the species-area relationship (SAR) 
(2-4) and the lognormal species-abundance 
distribution (4-6). The former states that the 
number of species found in a census patch of 
area A is a constant power of A: S = cAz; the 
latter states that the fraction of species with n 
individuals is a gaussian function of log(n). 

Although available data sets suggest that the 
lognormal abundance distribution may under- 
estimate the number of rare species in an eco- 
system or biome (1, 4, 7-10), in general the use 
of existing data sets to distinguish among can- 
didate functions describing patterns, and there- 
fore among underlying theories that generate 
these functions, is quite limited by inadequacies 
in existing data sets stemming from incomplete 
censusing and other sources of bias (1, 9, 11). 
Because of these empirical limitations, because 
an effort (4, 5) to demonstrate a theoretical 
connection between the lognormal abundance 
distribution and the species-area relationship 
has been questioned on theoretical grounds 

'(12), and because establishing mathematical 
linkages and incompatibilities among patterns 
may help us understand the mechanisms gen- 
erating observed patterns, an overarching theo- 
retical framework that unifies our understand- 

ing of patterns of species abundance and distri- 
bution in ecology is desirable. 

Consider area A,, where there are So species. 
The number of individuals in each species is 
described by probability distribution P,,(n), 
where Po(n)S,, is the expected number of species 
with n individuals. For convenience we take A,, 
to be a rectangle with a length-to-width 
ratio of dy so that repetitive bisections 
perpendicular to the long dimension yield at 
each stage rectangles of shape similar to the 
original. We denote by A, the area of each of 
the rectangles that are formed at the ith 
bisection, so that A, = A,,I2', and we denote 
by SI the number of species found on aver- 
age in an A, rectangle (Fig. 1). 

We define self-similarity in conformity 
with the fractal literature (13): a pattern is 
self-similar if it does not vary with spatial 
scale. We impose self-similarity in the distri- 
bution of species by assuming that if a spe- 
cies is known to be in an A[ rectangle, and 
nothing else about that species (such as its 
abundance) is known, then the probability 
that under bisection it will be found in at least 
a specific one of the two resulting A!,, rect- 
angles is a constant, a, that is independent of 
i. This implies that the fraction of those spe- 
cies found in A! that are also found in a 
specific one of the two A,,, is the same 
constant a .  The resulting spatial distribution 
of species is self-similar in the sense that the 
likelihood of occurrence in a half-patch under 
bisection is independent of spatial scale (14). 

If a species is known to exist in patch A,, 
there are three mutually exclusive possibilities 
for its presence or absence in the two A,,, 
patches that comprise A,: it is found only in the 
left half, it is found only in the right half, or it is 
found in both halves. From the above definition 
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probability (only in right half) 
= probability (not in left half) 
= l - a  (2) 

probability (in both halves) 
= 1 - probability (not in left half) 
- probability (not in right half) 

= 1 - 2 ( 1 - a ) = 2 a -  1 (3 

Note that the probabilities of these three options 
sum to 1, as they must. Because the probability 
a species in A, is at least in a specific bisection 
of A, must be at least 0.5, it follows that 0.5 5 

a % 1. The extreme values of a correspond to 
the case in which one species is found every- 
where (a = 1) and every individual belongs to 
a unique species (a = 0.5). 

By application under repeated bisections 
of our probability rule, it follows that the 
average number of species found in any par- 
ticular A! rectangle is 

From Eq. 4 it follows that S,I$ = a'-'. Now 
define z by letting 

Then SIIS/ = 2-"12-Jz. However, A,IA, = 
2-'12-J, so we can write S,/Sj = (A,IAJ)'. This 
is equivalent to Sl = cA:, which is just the 
power law form of the SAR. Thus, we have 
shown that our self-similarity condition leads 
to the power law form of the SAR. Elsewhere 
(IS) we have shown that the power law form 
of the SAR implies Eq. 4 and thus self- 
similarity. Note from Eq. 5 that 0.5 5 a 5 1 
implies 1 2 z 2 0. 

Consider, next, the consequence of Eqs. 1 
and 2 above, which can be reexpressed as 

probability (a species found in A, is found 
only in a particular half of A,) = 1 - a (6) 

Using Eq. 6 combined with the same reason- 
ing that led to Eq. 4, the average number, EL, 
of species found only in a specified A! rect- 
angle is given by 

Defining z' = -ln,(l - a), Eq. 7 is equiva- 
lent to E(A,)IE(Aj) = (AIIAJ)" or E(A) = 

c'Az'. This is just the "endemics-area rela- 
tionship" previously derived by us from the 
SAR (15). We note that 0.5 5 a 5 1 implies 
z' r 1 and that, for the commonly observed 
value z = 0.25, we have z' = 2.65. 

To derive the distribution P,(n) of abun- 
dances of individuals within species, we in- 
troduce the notion of a smallest patch size or 
unit rectangle within A,. This area, Am, con- 
tains on average one individual, so that Am = 

A0/2", where the mean total number of indi- 
viduals in A, is N, = 2". Because the unit 
rectangle contains one species as well as one 
individual, amSo = Sm = 1, or So = a-". 
Moreover, using Eq. 5, So = Noz. 

We generalize our definition of P so that 
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Pi(n) is the probability that if a species is 
found in a patch of area A,, then it contains n 
individuals. Our interest ultimately is in 
Po(n), the fraction of species in the entire 
surface that have n individuals, but to obtain 
that distribution we derive it recursively from 
the P,(n) for 0 < i 5 rn . Note that P,,(l) = 

1 (there will be on average one individual of 
whatever species is present in a unit rectan- 
gle) and, for each i, Pi (n) = 0 for n > 2'"' 
(on average, one cannot fit more individuals 
into an area than there are unit patches in that 
area) and C,, P,(n) = 1 (the sum of probabil- 
ities of all possible occurrences is 1). 

Using-Eqs. 1 to 3, and letting 2(1 - a) = 

x, where 0 5 x 5 1: it can readily be shown 
(Fig. 1) that the Pi(n) satisfy the following 
double recursion relation (1 6 ) :  

Analytical solutions to Eq. 8 can be derived 
for the first few values of n (1 7), but we have 
not been able to derive the general analytical 
solution for all i, n, and x. Nevertheless, 
numerical solutions for Po(n) are revealing. 
With P plotted against log(n), these species- 
abundance distributions are seen to deviate 
considerably from lognormal, being skewed 
more toward rarity (more species with low 
abundance) (Fig. 2). 

Plotted' on a linear abundance scale, the 
distributions are more skewed toward cornmon- 
ness than the gaussian but less so than the - 
lognormal. Because the lognormal distribution 
results from a ~roduct of random variables and 
the normal from a sum, it is not surprising that 
the distribution resulting from the sum of prod- 
ucts in Eq. 8 exhibits intermediate features. 
Plotted on log-log scales, the Po(n) are seen to 
be of the form Po(n) - nC(") (18) for n values 
sufficiently below the modal abundance, with 
c - 312, 1, and 314 for x = 0.26, 0.376, and 
0.484; the exponents c(x) are independent of m, 
as expected from self-similarity (Fig. 3). The 
parameter x in the species-abundance distribu- 
tion can be related to the SAR parameter z; 
using the relations x = 2(1- a) and a = 2-', 
we get z = -ln,[l - (x12)I. Corresponding to 
the values x = 0.260, 0.376, and 0.484 in Fig. 
2 are the values for the SAR power z = 0.2, 0.3, 
and 0.4. 

There is considerable observational sup- 
port for our self-similarity condition and the 
abundance distribution it predicts. First, nu- 
merous census data sets are compatible with 
the power-law form of the SAR, as reviewed 
by Rosenzweig (3). Second, the few tests 
carried out on the endemics-area relationship 
(Eq. 7) show good agreement (15, 19). al- 
though considerably more testing is needed 
Third, there is considerable evidence (7, 19, 
20) that the fraction of species in common to 

Fig. 1. Origin of the recursion 
relation for Pi(n). Consider the 
case i = 4 and n = 3. Diamond 
symbols correspond to individu- - - + 
als of a particular species found 
in a patch. On the left side of the 
"picture equation" there are 

P4i3) P5i3) (1 - a) (1 - a) P5i3) 

three individuals of a particular 
species in an A, rectangle. P4(3) 
is the probability that the partic- 
ular species has exactly three in- + + 
dividuals here. The right side of 
the equation sums the probabil- 
ities for all possible ways species (2a -1) ~ ~ ( 2 )  P5(1) (2a - I )  P5 ( i )  ~ ~ ( 2 )  
can have three individuals in 
patch A,. Algebraically, using Eqs. 1 to 3, this equation can be written P,(3) = 2(1 - a)P5(3) + 
(2a - 1)[P5(2)P5(1) + P5(1)P (2)]. Denoting 2(1 - a) by x, and noting that then 2a - 1 = 1 - x, 
this expression becomes ~ ~ ( 3 7  = xP5(3) + (1 - x)[2P5(2)P5(l)]. This particular case of Eq. 8 readily 
generalizes to all i and n. Note that we are assuming, parsimoniously, that the P,(n) distributions 
are constructed from independent draws from the ensemble distribution for the P,+,(n). One could, 
perhaps, construct landscapes based on suitable constrained dependent draws, while still imposing 
the species-area relationship through the (1 - a) and 2(1 - a) probability constraints for pairing 
empty and occupied halves. Whether abundance distributions that emerge from dependent draws 
are biologically reasonable and are shaped independent of scale, as are ours (see Figs. 2 and 3), is 
unclear. 

two spatially separated censused patches is a 
decreasing function of interpatch distance 
(zdp2'), in conformity with self-similarity 
(15). Fourth, measurements of the depen- 
dence of species richness on the shape as well 
as area of censused patches agree with pre- 
dictions (19, 21). Fifth, Kunin (22) present- 
ed empirical evidence that the amount of 
habitat occupied by a given plant species 
exhibits an approximate scale indepen- 
dence when viewed at different scales of 
resolution through "censusing windows" of 
various sizes. Our theory not only predicts 
this result but also provides an explicit 
relation between the box-counting fractal 
dimension implied by Kunin's finding and 
the abundance of the given species (23). 

W n )  

Fig. 2. Species-abundance distributions [Po(n) 
versus ln(n)] from Eq. 8 for m = 24 and x = 
0.484, 0.376, and 0.260 (corresponding to the 
species-area exponents z = 0.4, 0.3, and 0.2, 
and total species richnesses So = 772, 148, and 
28, respectively). The total number of individ- 
uals in each case is 2" - 1.7 X lo7.  Dashed 
portions of distributions correspond to the rar- 
est and most abundant single species. 

Sixth, available abundance data, while often 
qualitative at best because of sampling prob- 
lems (9, l l ) ,  generally resemble our predicted 
distribution more than they do the lognormal, 
ehbi t ing considerably more rarity than is pre- 
dicted by the latter distribution (1, 4, 8-10). 
Important exceptions to this occur, however, 
indicating that self-similarity and the SAR do 
not always describe species abundance and dis- 
tributions (24). 

Two caveats are in order. It is extremely 
unlikely that a strictly constant value of z in 
the SAR holds across an entire accessible 
scale range (3). If, however, z is a noncon- 
stant function of scale area, so that z = z(i), 
then that dependence can be inserted into Eq. 
8 and an abundance distribution can still be 
derived. The nature of the breakdown of strict 
self-similarity in small patches-for exam- 
ple, strong attraction (x .= 0) or repulsion 

Fig. 3. Species-abundance distributions [In 
Po(n) versus ln(n)] from Eq. 8 for x = 0.484 and 
m = 14 through 24 (corresponding t o  a total 
number of individuals ranging from -1.6 X l o 4  
to 1.7 x 107). 
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(x « 1) between nearby individuals of the same 
species—will then influence the shape of the 
abundance distribution in larger patches in a 
testable manner. Nevertheless, an abundance 
distribution skewed toward rarity relative to the 
lognormal still results as long as the curvature 
in z(i) is not extreme. Secondly, ecosystems are 
heterogeneous with respect to habitat quality, 
and thus quantities like S(At) and P.(n) depend 
on which patch of area A. is censused. More­
over, the minimum area per individual (Al}) will 
differ among species and among individuals in 
a species and thus can be defined only statisti­
cally (especially for motile organisms). Thus all 
statements we have made about the number of 
species, or the number of individuals within a 
particular species, in a patch of area A refer to 
the average over all the nonoverlapping patches 
of area A that comprise the system. 

We have demonstrated that self-similarity 
theory provides an overarching framework 
within which empirically supported patterns 
in ecology are unified* new and plausible 
results are derived, and the connection be­
tween the SAR and the lognormal abundance 
distribution is questioned. Because our recur­
sion relation for the species-abundance distri­
bution is derived under the assumption of 
self-similarity, it may be more widely appli­
cable to other spatial arrays of types of ob­
jects or to the distribution of energy fluctua­
tions in turbulent media (25). 
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(7). NMDA receptor-mediated Na+ and Ca2+ 

influx participates in synaptic transmission (2, 
3) and excitotoxicity (4). In contrast, NMDA 
receptor-mediated K+ efflux has received little 
scrutiny, and its functional significance in either 
normal or abnormal states has not been defined. 
Stimulating NMDA receptors can induce cen­
tral neuronal apoptosis (5, 6), and loss of cel­
lular K+ may be a key step in caspase activa­
tion (7) and programmed cell death (8, 9). We 
set out to test the hypothesis that NMDA recep­
tor-mediated K+ efflux might promote neuro­
nal apoptosis. 

To detect K+ efflux through NMDA re­
ceptor channels, the membrane current trig-
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gered by NMDA was recorded in mouse 
cortical neurons by means of patch clamp 
whole-cell recording in an extracellular solu­
tion where Ca2+ and Na+ were replaced by 
the impermeable cation iV-methyl-D-glu-
tamine (NMG) (10). At the membrane poten­
tial of -60 mV, where NMDA normally 
evokes inward currents in bathing solutions 
containing physiological concentrations of 
Na+ and Ca2+, application of 200 |ULM 
NMDA plus 10 |ULM glycine induced an out­
ward current, designated here as /NMDA.K, of 
33 ± 6 pA (mean ± SEM, n = 11 cells; Fig. 
1). This outward current was enlarged at de­
polarized membrane potentials, reaching 
315 ± 39 pA at 0 mV (n = 11). The current-
voltage curve of /NMDA_K showed slight out­
ward rectification, and the current reversed 
at -86 ± 4 mV (n = 8), near the calculated 
K+ equilibrium potential of -93 mV. The 
^NMDA-K reversal potential shifted toward 
more positive potentials when external K+ 

was increased from 3 mM to 25 mM (Fig. 1) 
or when internal K+ was decreased from 120 

NMDA Receptor-Mediated K+ 

Efflux and Neuronal Apoptosis 
S. P. Yu,* C-H. Yeh,* U. Strasser, M. Tian, D. W. Choif 

Neuronal death induced by activating A/-methyl-D-aspartate (NMDA) receptors 
has been linked to Ca2+ and Na+ influx through associated channels. Whole-cell 
recording from cultured mouse cortical neurons revealed a NMDA-evoked 
outward current, /NMDA_K, carried by K+ efflux at membrane potentials positive 
to - 8 6 millivolts. Cortical neurons exposed to NMDA in medium containing 
reduced Na+ and Ca2+ (as found in ischemic brain tissue) lost substantial 
intracellular K+ and underwent apoptosis. Both K+ loss and apoptosis were 
attenuated by increasing extracellular K+, even when voltage-gated Ca2+ chan­
nels were blocked. Thus NMDA receptor-mediated K+ efflux may contribute to 
neuronal apoptosis after brain ischemia. 
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