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The Role of Area 17 in Visual 
Imagery: Convergent Evidence 

from PET and rTMS 
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Visual imagery is used in a wide range of mental activities, ranging from 
memory t o  reasoning, and also plays a role in perception proper. The contri- 
bution of early visual cortex, specifically Area 17, t o  visual mental imagery was 
examined by the use of two  convergent techniques. In one, subjects closed their 
eyes during positron emission tomography (PET) while they visualized and 
compared properties (for example, relative length) of sets of stripes. The results 
showed that when people perform this task, Area 17 is activated. In the other, 
repetitive transcranial magnetic stimulation (rTMS) was applied t o  medial 
occipital cortex before presentation of the same task. Performance was im- 
paired after rTMS compared wi th  a sham control condition; similar results were 
obtained when the subjects performed the task by actually looking at the 
stimuli. In sum, the PET results showed that when patterns of stripes are 
visualized, Area 17 is activated, and the rTMS results showed that such acti- 
vation underlies information processing. 

Many people report that they visualize when 
they recall information about the shape, col- 
or, or texture of an object that was encoded 
only incidentally, when they reason about 
space, understand descriptions of scenes, and 
so on. Although these reports are not in dis- 
pute, what they signal about mental processes 
has been a thorny problem for centuries (1). 
One issue focuses on whether the experience 
of visualization is a hallmark of an internal 
representation that depicts shapes. Such a 
"depictive" representation is extended in 
space and represents each part of an object so 
that the distances among the parts in the 

task underlies processing used to carry out 
that task. 

Numerous neuroimaging experiments 
have investigated the neural underpinning of 
imagery by the use of various techniques, 
including positron emission tomography 
(PET) and functional magnetic resonance im- 
aging (fMRI). The results of these studies are 
mixed, but about half of the studies have 
found activation during visual imagery in 
medial occipital cortex (corresponding to ei- 
ther Area 17 or 18, both of which are topo- 
graphically organized in the human brain), 
whereas the remaining studies did not find 

representation correspond to the distances such activation (3). The experiments differ in 
among the corresponding parts of the object. many ways, ranging from the nature of the 
The activation of topographically organized task to the specific neuroimaging techniques 
areas of visual cortex during visual mental used, and thus there are many possible rea- 
imagery has been taken as evidence that such sons for the disparities. One way that the 
representations are present (2). However, it is studies differ is in the requirement that sub- 
possible that such activation is a nonfunction- jects actually must form a depictive image 
a1 byproduct of activation in other areas and ( 4 ) .  
itself plays no actual role in representing 
information during imagery. Here we demon- 
strate that the activation in topographically 
organized cortex engendered by an imagery 
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Fig. 1. Illustration of stimuli used in the task. All 
sets of stripes together were about 5 inches 
high and 5 inches wide (subtending -13" of 
visual angle from the subject's point of view). 
As illustrated, the stripes varied in length, 
width, orientation, and the amount of space 
between the bars. The numbers 1, 2, 3, and 4 
were used to  label the four quadrants, each of 
which contained a set of stripes. After memo- 
rizing the display, the subjects closed their eyes, 
visualized the entire display, heard the names 
of two quadrants, and then heard the name of 
a comparison term (for example, "length"); the 
subjects then decided whether the stripes in 
the first-named quadrant had more of the 
named property than those in the second. Sub- 
jects were told to  make their judgments by v i s ~  
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In this investigation we used a task that 
clearly requires one to visualize patterns that 
depict information. Moreover, we investigat- 
ed the same task with PET and repetitive 
transcranial magnetic stimulation (rTMS), 
showing not only that Area 17 is activated 
when people perform the task, but also that 
performance of this task is impaired when 
neural activity in this region of cortex is 
disrupted by rTMS. 

We used the imagery task designed by 
Kosslyn, Sukel, and Bly ( 5 ) .  Eight subjects 
( 6 )  memorized a display that contained four 
quadrants, each of which contained a set of 
stripes (Fig. 1). The subjects were scanned as 
they closed their eyes and visualized the dis- 
play ( 7 ) ,  and then heard two numbers, which 
they had previously learned were labels for 
specific quadrants, followed by the name of a 
dimension (such as "length"). They were to 
decide whether the set of stripes in the first- 
named quadrant was greater along that di- 
mension than the set of stripes in the second- 
named quadrant. The resulting brain activa- 
tion was compared with a control condition 
in which the same type of auditory stimuli 
were delivered but no imagery was used 
(8) .  

The PET data were analyzed with publicly 
available statistical parametric mapping soft- 
ware (9). The key result was that we found 
activation in Area 17 (Fig. 2). Other areas 
were also activated, including Areas 18/19 
(Fig. 2), but they are not relevant for the 
present issue (10). 

Neuroimaging can only establish the as- 
sociation between task performance and a 
pattern of cortical activation. In contrast, by 
transiently disrupting the function of a target- 
ed cortical region, rTMS allows one to test 
the causal link between activity in that region 
and task performance (11). This technique 
essentially creates a temporary, reversible 
"lesion"; this lesion need only be severe 
enough to produce observable decrements in 
performance. In 1989, Amassian et al. (12) 
demonstrated that single pulses of transcrani- 
a1 magnetic stimulation (TMS) delivered to 
the occipital cortex 60 to 140 ms after a 
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visual stimulus disrupt performance on a let- 
ter-identification task. Since then, the sup- 
pressive effects of single-pulse TMS on visu- 
al cortex have been replicated in various ex- 
periments (13). Such single-pulse studies re- 
quire both temporal and spatial knowledge: 
where to stimulate and when. In contrast, 
rTMS can modulate the level of excitability 
of a given cortical area beyond the duration 

F i g  2. The resulk of 
PET scanning, showing 
activation in Area 17 
[peak Z score of 3.38 at 
coordinates -2, -88, 
-12, according to the 
Talairach and Gumoux 
atlas (23)], during im- 
agery compared with 
baseline. Activation in 
Areas 18/19 (peak Z 
score of 3.44 at coordi- 
nates 34, -86, 12) can 
also be seen in this slice 
plane. Strength of Z 
scores is illustrated ac- 
cording to color, with 
blue, green, yellow, 

of the rTMS train itself, thereby providing an 
opportunity to test the contribution of that 
cortical area to a given task without stringent 
temporal constraints (14). For example, after 
being delivered at a rate of 1 Hz, rTMS 
decreases cortical excitability for minutes af- 
terward (15), thereby providing a transient, 
partial "functional lesion" of a specific corti- 
cal region and allowing one to test its causal 

Imagery minus  bast...^ - 
Area 
18119 
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and rea repre;enting 
increasingly high Z 
scores; in this slice 
plane, the highest Z 
score, located within 
Area 17, is 3.31. 

Area 17 

link to performance in a task. 
Using 1-Hz real or sham rTMS (16), we 

stimulated five subjects (1 7) over the occip- 
ital pole, targeting Area 17 (18). Real or sham 
rTMS was applied before performance of an 
imagery or a perceptual version of the task 
used in the PET study (19-21). In the percep- 
tual version of the task subjects compared the 
sets of stripes on a visible display. If we did 
not succeed in disrupting perception in the 
same task, we would have little evidence that 
we had interfered with the function of the 
visual cortex per se. As shown in Fig. 3, TMS 
delivered to medial occipital cortex did in 
fact disrupt both perception and imagery. 

Real. com~ared with sham, rTMS targeted 
toward the sibject's Area 17 led to impaired 
performance in both the perceptual and the 
imagery tasks. In the PET experiment we 
found multiple cortical areas activated, but 
previous research has shown that stimulating 
one visual area does not disrupt processing in 
other areas that are similar distances from the 
site at which TMS was directed (22). 

In summary, we not only found that medial 

I occipital cortex, specifically Area 17, was acti- 

Coronal View 
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vated while people visualized and compared I sets of stripes, but also that such activation was 
not "epiphenomenal" (that is, akin to the heat 
produced by a lightbulb when one is reading, 
which plays no functional role in allowing one 
to read). The TMS results show that the activa- 
tion revealed by PET is indeed causally linked 
to performance of the task, that the early occip- 
ital visual cortical areas are indeed used in at 
least some forms of visual imagery as well as in 
wsual perception. 
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Fig  3. Results when rTMS was delivered before the 3500 - 
imagery and perception conditions. "Real" rTMS oc- 
curred when the magnetic field was directed into 
Area 17, whereas "sham" rTMS occurred when the 3000- 
field was diverted away from this site. A two-way 
repeated analysis of variance (ANOVA) on the 
response times (trimmed to eliminate outliers) - 2500 - 
revealed a main effect of stimulation (real rTMS 
versus sham rTMS) [F (1,4) = 29.86, P < 0.011 - 
and a main effect of modality (image versus 2000 - 
perception) [F (1.4) = 16.65, P < 0.04. There ; 
was no interaction between stimulation and mo- 2 
dality [F(1,4) < 11. Contrasts revealed that the 1500- 
response times during real rTMS were greater 8 
than those during sham rTMS in both imagery [F a 
(1.4) = 9.32, P < 0.041 and perception [F (1.4) = 1000- ' /  
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8.17, P < 0.051 (1945 ms versus 1759 ms and 
1002 ms versus 827 ms, respectively). As shown 

. 

here, this response time increase was observed in 500- 
all five subjects in both modalities. Digits next to 
each line indicate subject number. The corre- 

:/ :- 

sponding ANOVA on the error rates revealed no 0 - 
significant effects (all F's < 1, all Ps > 0.5) which Sham Real Sham Real 
belies the possibility of a speed-accuracy trade- Perception Imagery 
off (the means were as follows: sham perception, 
13.3%; real perception, 13.3%, sham imagery, 9.2%; real imagery, 13.3%). The error rates during the 
TMS condition were lower than in the PET condition, which probably reflects the large number of 
practice trials used here versus the small number used in the PET study. For PET, we wanted the task 
to be as challenging as possible, thereby engendering maximal blood flow in relevant brain areas, but 
for rTMS we wanted to ensure that response times were not at ceiling, and thus included many more 
practice trials. 



property o f  the stripes, such as "1, 2, Length." The 
numbers specified which t w o  quadrants were t o  be 
compared, and the property name indicated t he  com- 
parison the subject was t o  make ( length, w id th ,  ori-  
entat ion, o r  spacing between t he  stripes). For half the 
comparisons o f  each type, t he  stripes in t he  quadrant 
named f irst had more o f  t he  specified dimension, 
whereas for the other half the stripes in the quadrant 
named second were greater along this dimension. A l l  
o f  t he  cues were a single syllable (the wo rd  " t i l t "  cued 
orientat ion discriminations and "space" cued spacing 
discriminations). W e  created t w o  sets o f  cues; one of  
t hem asked subjects t o  compare length or w id th  and 
the other asked subjects t o  compare spacing or ori-  
entat ion. Half the subjects received one set o f  cues, 
and half received the other. The subjects were n o t  
aware o f  the possible comparisons whi le  they studied 
and memorized the st imuli .  For the baseline i n  the 
PET study, t w o  addit ional words ("depth" and 
"height") were used so t ha t  the subjects would  no t  
have any idea o f  h o w  they were t o  study the st imuli ,  
once these were presented t o  t hem in t he  learning 
phase. The cues were presented w i t h  software on a 
Macintosh computer  w i t h  an RCB moni tor  (Apple 
Computer, Cupert ino, CA). The t r ia l  sequence w i t h i n  
each block was random, except t ha t  the same num-  
ber (which labeled a quadrant) and the same type o f  
discrimination could n o t  appear more than three 
t imes in succession. 

6. Eight r ight-handed male students o r  professionals 
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hypotheses o f  the experiment a t  the t ime  o f  testing. 
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pressing t w o  dif ferent keys w i t h  t he  midd le  and index 
finger o f  their dominant  hand). Response t ime  was 
measured f r om the  t ime  o f  st imulus onset t o  the key 
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learned the st imulus display as before. However, 
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i ng  effects, t he  subjects were randomly  assigned t o  
receive sham (n = 2) or real rTMS (n  = 3) first. The 
imagery task was always conducted f irst t o  prevent 
t he  subjects f r om overlearning the st imuli  (and thus 
no t  having t o  use imagery later), wh ich m a y  have 
occurred i f  the perceptual task was presented first. 

21. Repetitive TMS was tolerated we l l  b y  al l  subjects, 
w i t hou t  undesirable side effects. N o  pre- or post-TMS 
differences i n  neurological status o r  visual acuity 
were noted in any o f  the subjects. None  reported 
phosphenes during the st imulat ion. 

22. For example, C. Beckers and V. Homberg,  [Exp. 
Brain Res. 87,  421  (1991) ]  and C Beckers and 8. 
Zeki [Brain, 118 ,  4 9  (1995) l  showed t h a t  TMS over  
t h e  presumed site o f  Area V5  impai red m o t i o n  
perception, bu t  l e f t  co lor  percept ion and shape 
percept ion unchanged; in contrast, TMS t o  V 1  
(Area 17)  d is rupted detect ion o f  visual s t imu l i  
w i t h o u t  a f fec t ing m o t i o n  perception. Areas V5  and 
V 1  are in terconnected,  and therefore ,  i f  t he  effects 
o f  TMS o n  a g iven cor t ica l  area we re  secondary t o  
t ranssynapt ic  effects, TMS t o  V 1  should d is rupt  
m o t i o n  percept ion (by remo te  e f fec ts  o n t o  V5)  and 
TMS t o  V 5  should  d is rupt  visual percept ion i n  
genera l  (by  remo te  e f fec ts  o n t o  V I ) .  This was n o t  
t h e  case. A l t hough  t ranssynapt ic  e f fec ts  o f  TMS o n  
d is tant  cor t ica l  and subcor t ica l  areas are possible 
[ for  example, R. J, l lmon iem i  e t  a / . ,  Neu ro repo r t  8, 
3 5 3 7  (1997) ;  T. Paus e t  a/., J. Neurosci.  17 ,  3178  
(1997) ] ,  these effects have n o t  been found t o  
produce signif icant changes i n  behavior w i t h i n  t h e  
t i m e  span s tud ied here. TMS effects appear t o  
or ig inate  f r o m  d isrupt ion o f  t he  same cor t ica l  ar- 
eas t h a t  show act ivat ion o n  funct iona l  imaging 
studies, and or ig inate  pr imar i ly  f r o m  d isrupt ion o f  
t h e  d i rec t ly  targeted cor t ica l  region. A m o n g  t he  
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areas activated in our study [see (TO)], the one 
closest to  Area 17 (where TMS was delivered) was 
Areas 18/19. which was at a distance of 43.3 mm; 
the closest other areas that were activated were 
the cerebellum. 43.7 mm from Area 17. and the 
occipito-parietal sulcus, 45.3 mm from Area 17. 
Given the previous findings with TMS noted above, 
it is unlikely that TMS delivered to medial occipital 
cortex had its effects by disrupting one of the more 
remote areas that were activated during the task. 

23. J. Talairach and P. Toumoux. Co-planar Stereotaxic 
Atlas of the Human Brain. M. Rayport, transl. 
(Thieme. New York, 1988). 
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ing xientist from the Department of Pediatrics. Di- 
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Psychological Association rules and regulations. After 
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iment were explained, informed consent was ob- 
tained from each subject before the experimental 
procedure began. This research was approved by the 
respective Institutional Review Boards of the spon- 
soring institutions. 

10 December 1998: accepted 4 March 1999 

ience man 
1 click of 

1 70 2 APRIL 1999 VOL 284 SCIENCE www.sciencemag.org 




