
rigorously tested for their ability to produce 
the oscillatory states usually associated with 
nonlinear effects. In addition. it can be ar- 
gued, as by Deutsch (lo), that the Navier- 
Stokes equations, although capable of simu- 
lating mean macroscopic characteristics, are 
inappropriate for determining sensitivities to 
initial conditions. Because all objects, includ- 
ing those in the climate system, really obey 
quantum theory not classical mechanics and 
quantum theory does not show such sensitiv- 
ity to initial conditions. perhaps this model- 
ing approach provides the wrong estimate of 
the real world sensitivity. 

The uncertain importance of complexity in 
climate has implications for the resources need- 
ed to model the climate system and provide 
hture forecasts. In practical terms. the ques- 
tions become what spatial and temporal scales 
must be included in models, and how accurate 
must the depiction of the specific physical pro- 
cesses be? Depending on the perceived impor- 
tance of the nonlinear effects, these questions 
may have very different answers. 

From the point of view that focuses on the 
net radiation, detailed physics and fine scales 
are required only when necessary for model- 
ing those processes that have the largest im- 
pact on the available energy. An appreciation 
of exactly what those scales must be awaits 
better understanding of some of the phenom- 
ena, for example, convection and cloud for- 
mation. Other scales and physical details are 
important primarily for localized impacts. 
For example, we probably need better under- 

standing of how water moves through the 
soil, which includes both stochastic flow 
though a porous media and pipe flow 
through an irregular distribution of worm and 
root holes, if we truly want to be able to 
predict water availability in specific regions; 
a prime target would be forecasting the future 
recharge of the Ogallala aquifer, which pro- 
vides much of the water for irrigation in the 
southwestern United States and is already 
being depleted (11). 

If, on the other hand, there is a need to 
account for the various nonlinear effects and 
their up-scale potential. then the small scales 
acquire greater importance, as the key inter- 
actions that govern transitions from one state 
to the other may depend on local processes. 
Palmer (12, pp. 419-420) argues that "it may 
not be enough for climate models to have 
fluxes that are accurate to 4 W m-2 on global 
scales; they may also have to be accurate to 4 
W m-2 in specific key sensitive regions, even 
if we are only interested in the hemispheric- 
mean response to imposed CO, doubling." 
Similarly, if the change in El Niiio frequen- 
cies in the future is to be investigated, this 
imposes stringent requirements on modeling 
scales: None of the models used to simulate 
climate change seem to have sufficient reso- 
lution in the tropical oceans to induce realis- 
tic El Niiios (4). 

Conclusion: Limits t o  Forecasting? 
Where does this leave us? Questions con- 
cerning the future climate in general will 

probably continue to be dominated by 
uncertainties in the radiative feedbacks. 
These feedbacks may be influenced by the 
system's nonlinearities and the future pat- 
terns of variability, but we do not know by 
how much. On the regional scale, the non- 
linearities might play a larger role; they 
also might be extremely difficult to fore- 
cast. Climate. like weather, will likely al- 
ways be complex: determinism in the midst 
of chaos, unpredictability in the midst of 
understanding. 
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Complexity and the Economy 
W. Brian Arthur 

After two centuries of studying equilibria-static patterns that call for no 
further behavioral adjustments-economists are beginning to study the 
general emergence of structures and the unfolding of patterns in the 
economy. When viewed in out-of-equilibrium formation, economic pat- 
terns sometimes simplify into the simple static equilibria of standard 
economics. More often they are ever changing, showing perpetually novel 
behavior and emergent phenomena. Complexity portrays the economy 
not as deterministic, predictable, and mechanistic, but as process depen- 
dent, organic, and always evolving. 

Common to all studies on complexity are 
systems with multiple elements adapting or 
reacting to the pattern these elements create. 
The elements might be cells in a cellular 
automaton, ions in a spin glass, or cells in an 
immune system, and they may react to neigh- 
boring cells' states. or local magnetic mo- 
ments, or concentrations of B and T cells. 

Santa Fe Institute, 1399  Hyde Park Road, Santa Fe, 
NM 87501, USA. 

Elements and the patterns they respond to 
vary from one context to another. But the 
elements adapt to the world-the aggregate 
pattern-they co-create. Time enters natural- 
ly here via the processes of adjustment and 
change: As the elements react, the aggregate 
changes; as the aggregate changes, elements 
react anew. Barring the reaching of some 
asymptotic state or equilibrium, complex sys- 
tems are systems in process that constantly 
evolve and unfold over time. 

Such systems arise naturally in the econ- 
omy. Economic agents, be they banks. con- 
sumers, firms, or investors, continually adjust 
their market moves. buying decisions, prices, 
and forecasts to the situation these moves or 
decisions or prices or forecasts together cre- 
ate. But unlike ions in a spin glass, which 
always react in a simple way to their local 
magnetic field, economic elements (human 
agents) react with strategy and foresight by 
considering outcomes that might result as a 
consequence of behavior they might under- 
take. This adds a layer of complication to 
economics that is not experienced in the nat- 
ural sciences. 

Conventional economic theory chooses 
not to study the unfolding of the patterns its 
agents create but rather to simplify its ques- 
tions in order to seek analytical solutions. 
Thus it asks what behavioral elements (ac- 
tions, strategies, and expectations) are consis- 
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I tent with the aggregate patterns these behav- first in the market, but by chance and strategy tion (10). The common finding that economic 
ioral elements co-create? For example. gen- 
eral equilibrium theory asks what prices and 
quantities of goods produced and consumed 
are consistent with (would pose no incentives 
for change to) the overall pattern of prices 
and quantities in the economy's markets. 
Game theory asks what moves or choices or 
allocations are consistent with (are optimal 
given) other agents' moves or choices or 
allocations in a strategic situation. Rational 
expectations economics asks what forecasts 
(or expectations) are consistent with (are on 
average validated by) the outcomes these 
forecasts and expectations together create. 
Conventional economics thus studies consis- 
tent patterns: patterns in behavioral equilibri- 
um that would induce no further reaction. 
Economists at the Santa Fe Institute, Stan- 
ford, MIT, Chicago. and other institutions are 
now broadening this equilibrium approach by 
turning to the question of how actions, strat- 
egies, or expectations might react in general 
to (might endogenously change with) the ag- 
gregate patterns these create (1, 2). The re- 
sult-complexity economics-is not an ad- 
junct to standard economic theory but theory 
at a more general, out-of-equilibrium level. 

The type of systems I have described be- 
come especially interesting if they contain 
nonlinearities in the form of positive feed- 
backs. In economics, positive feedbacks arise 
from increasing returns (3, 4). To ensure that 
a unique, predictable equilibrium is reached, 
standard economics usually assumes dimin- 
ishing returns. If one firm gets too far ahead 
in the market. it runs into higher costs or 
some other negative feedback, and the market 
is shared at a predictable unique equilibrium. 
When we allow positive feedbacks, or in- 
creasing returns. a different outcome arises. 
Consider the market for online services of a 
few years back. in which three major compa- 
nies competed: Prodigy. Compuserve, and 
America Online. As each gained in member- 
ship base, it could offer a wider menu of 
services as well as more members to share 
specialized hobby and chat room interests 
with-that is, there were increasing returns to 
expanding the membership base. Prodigy was 

America Online got far enough ahead to gain 
an unassailable advantage. Today it domi- 
nates. Under different circumstances. one of 
its rivals might have taken the market. Notice 
the properties here: a multiplicity of potential 
solutions; the outcome actually reached is not 
predictable in advance; it tends to be locked 
in: it is not necessarily the most efficient 
economically; it is subject to the historical 
path taken; and although the companies may 
start out equal. the outcome is asymmetrical. 
These properties have counterparts in nonlin- 
ear physics where similar positive feedbacks 
are present. What economists call multiple 
equilibria, nonpredictability, lock-in, ineffi- 
ciency, historical path dependence. and 
asymmetry, physicists call multiple metasta- 
ble states, unpredictability, phase or mode 
locking, high-energy ground states, noner- 
godicity, and symmetry breaking (5). 

Increasing returns problems have been 
discussed in economics for a long time. A 
hundred years ago, Alfred Marshall (6) noted 
that if firms gain advantage as their market 
share increases. "whatever firm first gets a 
good start will obtain a monopoly." But the 
conventional static equilibrium approach gets 
stymied by indeterminacy: If there is a mul- 
tiplicity of equilibria, how might one be 
reached? The process-oriented complexity 
approach suggests a way to deal with this. In 
the actual economy, small random events 
happen; in the online services case, events 
such as random interface improvements. new 
offerings, and word-of-mouth recommenda- 
tions. Over time, increasing returns magnify 
the cumulation of such events to select the 
outcome randomly. Thus. increasing returns 
problems in economics are best seen as dy- 
namic processes with random events and nat- 
ural positive feedbacks-as nonlinear sto- 
chastic processes. This shift from a static 
outlook into a process orientation is common 
to complexity studies. Increasing returns 
problems are being studied intensively in 
market allocation theory (4), international 
trade theory ( 7 ) ,  the evolution of technology 
choice (a), economic geography (9 ) ,  and the 
evolution of patterns of poverty and segrega- 
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structures can crystallize around small events 
and lock in is beginning to change policy in 
all of these areas toward an awareness that 
governments should avoid both extremes of 
coercing a desired outcome and keeping strict 
hands off. and instead seek to push the system 
gently toward favored structures that can 
grow and emerge naturally. Not a heavy 
hand, not an invisible hand, but a nudging 
hand. 

Once we adopt the complexity outlook, 
with its emphasis on the formation of struc- 
tures rather than their given existence, prob- 
lems involving prediction in the economy 
look different. The conventional approach 
asks what forecasting model (or expectations) 
in a particular problem, if given and shared 
by all agents. would be consistent with 
(would be on average validated by) the actual 
time series this forecasting model would in 
part generate. This "rational expectations" 
approach is valid. But it assumes that agents 
can somehow deduce in advance what model 
will work and that everyone "knows" that 
everyone knows to use this model (the com- 
mon knowledge assumption.) What happens 
when forecasting models are not obvious and 
must be formed individually by agents who 
are not privy to the expectations of others? 

Consider as an example my El Farol Bar 
Problem (11). One hundred people must de- 
cide independently each week whether to 
show up at their favorite bar (El Farol in 
Santa Fe). The rule is that if a person predicts 
that more that 60 (say) will attend, he or she 
will avoid the crowds and stay home; if he 
predicts fewer than 60, he will go. Of interest 
are how the bar-goers each week might pre- 
dict the numbers of people showing up, and 
the resulting dynamics of the numbers attend- 
ing. Notice two features of this problem. Our 
agents will quickly realize that predictions of 
how many will attend depend on others' pre- 
dictions of how many will attend (because 
that determines their attendance). But others' 
predictions in turn depend on their predic- 
tions of others' predictions. Deductively 
there is an infinite regress. No "correct" ex- 
pectational model can be assumed to be com- 
mon knowledge, and from the agents' view- 
point, the problem is ill defined. (This is true 
for most expectational problems. not just for 
this example.) Second. and diabolically, any 
commonalty of expectations gets broken up: 
If all use an expectational model that predicts 
few will go, all will go. invalidating that 
model. Similarly, if all believe most will go, 
nobody will go, invalidating that belief. Ex- 
pectations will be forced to differ. 

In 1993, I modeled this situation by as- 
suming that as the agents visit the bar, they 
act inductively-they act as statisticians, 
each starting with a variety of subjectively 
chosen expectational models or forecasting 
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hypotheses. Each week they act 011 their cur- 
rently most accurate model (call this their 
active predictor). Thus agents' beliefs or 11y- 
potheses cornpete for use in an "ecology" 
these beliefs create. Conlputer sirnulation 
(Fig. 1) showed that the meall attendance 
quickly converges to 60. I11 fact, the predic- 
tors self-organize into an equilibrium ecology 
in \vhich, of the active predictors, 40% on 
average are forecasting above 60 and 60% 
below 60. This emergent ecology is organic 
in nature, because although the population of 
active predictors splits into this 60!40 average 
ratio, it keeps changing in membership for- 
ever. Why do the predictors self-organize so 
that 60 emerges as average attendance and 
forecasts split into a 60"40 ratio? Well, sup- 
pose 70% of predictors forecasted above 60 
for a longish time, then on average only 30 
people ~vould show up. But this would vali- 
date predictors that forecasted close to 30. 
restoring the ecological balance among pre- 
dictions. The 40%:60% "natural" combina- 
tion becomes an emergent structure. The Bar 
Problem is a mi~liature expectational econo- 
my n.it11 complex dynamics (12). 

One important application of these ideas 
is in financial markets. Standard theories of 
financial markets assume rational expecta- 
tions-that agents adopt unifornl forecasting 
models that are on average validated by the 
prices these forecast (13). The theory works 
well to first order. But it doesn't account for 
actual market anonlalies such as unexpected 
price bubbles and crashes, random periods of 
high and low volatility (price variation), and 
the heavy use of technical trading (trades 
based on the recent history of price patterns). 
Holland, LeBaron, Palmer, Tayler, and I (14)  
have created a model that relaxes rational 
expectations by assuming, as in the Bar Prob- 
lem. that investors cannot assume or deduce 
expectations but must discover thern. Our 
agents continually create and use rnultiple 
market hypotheses-individual. subjective, 
expectational ~llodels-of future prices and 
dividends within an artificial stock market on 
the computer. These "investors" are iadivid- 
ual. artificially intelligent computer programs 
that can generate and discard expectational 
hypotheses and make bids or offers based on 
their currently most accurate hypothesis. The 
stock price forms frorn their bids and offers 
and thus ultimately from agents' expecta- 
tions. So this market-in-the-machine is its 
own self-contained, artificial financial m~orld. 
Like the bar, it is a mini-ecology in which 
expectations compete in a world those expec- 
tations create. 

Within this computerized market, we 

---- C O M P L E X  S Y S T E M S  - 

fou~ld two phases or regimes If parameters 
are set so that our artificial agents update 
the~r  hypotheses slo~vly, the diversity of ex- 
pectations collapses quickly into homoge- 
neous rational ones. The reason is that if a 
majority of investors believes something 
close to the rational expectations forecast, 
then resulting prices will validate it. and de- 
viant or mutant predictio~ls that arise in the 
population of expectational models ivill be 
rendered inaccurate. Standard finance theo~y. 
under these special circumstances, is upheld. 
But if the rate of updating of hypotheses is 
increased, the market undergoes a phase tran- 
sition into a con~plex regime and displays 
several of the ano~llalies observed in real 
markets. It develops a rich psychology of 
divergent beliefs that don't converge over 
time. Expectat~onal rules such as "if the mar- 
ket is trending up. predict a l% price rise'' 
that appear randomly in the population of 
hypotheses call become mutually reinforcing: 
If enough investors act on these, the price will 
indeed go up. Thus subpopulatio~ls of muh~-  
ally reinforcing expectations arise. agents bet 
on these (therefore technical trading emerg- 
es), and this causes occasional bubbles and 
crashes. Our artificial market also s11on.s pe- 
riods of high volatility in prices, follo~ved 
randomly by periods of Ion. volatility. This is 
because if some investors discover new prof- 
itable hypotheses. they change the market 
slightly, causing other investors to also 
change their expectations. Changes in beliefs 
therefore ripple through the market in ava- 
lanches of all sizes, causing periods of high 
and low volatility. We co~ljecture that actual 
financial markets. which show exactly these 
phenomena, lie in this complex regime. 

.After two ce~lturles of studying equilib- 
ria-static patterns that call for no fi~rther 
behavioral adjustments-eco~lomists are be- 
ginning to study the general enlergence of 
structures and the unfolding of patterns in the 
economy. Complexity economics is not a 
temporary adjunct to static econornic theory 
but theo~y at a more general, out-of-equilib- 
rium level. The approach is making itself felt 
in evely area of economics: game theory (151, 
the theo~y of money and finance ( I6) ,  leam- 
~ n g  111 the economy (1 7). economlc Illstory 
(18), the ea o lu t~o~l  of t~adnlg net\+ o ~ k s  (19). 
the s t ab~ l~ ty  of the econorny (201, and po11t1- 
cal economy (21) It 1s help~ng us understand 
phenomena such as market instability. the 
emergence of monopolies, and the persis- 
tence of poverty in ways that will help us deal 
with these. And it is bringing an awareness 
that policies succeed better by influencing the 
natural processes of fo~mation of econo~nic 

structures than by forcing static outcomes. 
When viewed in out-of-equilibriurn for- 

mation, economic pattenls sonletimes fall 
into the simple hornoge~leous equilibria of 
standard econon~ics. More often they are ever 
changing, showing perpetually novel behav- 
ior and emergent phenomena. Cornplexity 
therefore portrays the economy not as deter- 
ministic, predictable, and mechanistic but as 
process dependent, organic. and always 
evolving. 
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