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Complexity and the Nervous System 
Christof ~ o c h ' , ~ *  and Gilles Laurent' 

Advances in the neurosciences have revealed the staggering complexity of 
even "simple" nervous systems. This is reflected in their function, their 
evolutionary history, their structure, and the coding schemes they use t o  
represent information. These four viewpoints need all play a role in any 
future science of "brain complexity." 

From 1.5 kilograms of flaccid matter, convolut- through many different modalities by extracting 
ed folds. about 100 billion neuronal compo- relevant patterns (shapes. sounds, odors, and so 
nents, hundreds of trillions of interconnections, on) from a noisy, nonstationary. and often un- 
many thousand kilometers of cabling. and a predictable environment. Brains control and co- 
short cultural history emerged calculus, S~t,an ordinate movements of jointed (limbs) as well 
Lake, Kind of Blue, the Macintosh, and The as soft (tongues) appendages, form memones 
Master and Margarita. The brain is often cas- with lifetimes that can well exceed those of the 
ually described as the most complex system in molecules holding them, and construct implicit 
the universe. What could this mean? Only a and explicit models of the world and its dynam- 
decade ago, "complex" simply meant made of ics. Above all. brains control behavior, the con- 
many interrelated parts (the word derives from 
"braided together"). Within mathematics and 
the physical sciences, the term "complexity" 
has recently acquired a number of narrower but 
technical definitions (1). Our task as neurosci- 
entists is to assess how complexity-the con- 
cept or the science-can help us better under- 
stand the workings of nervous systems. We 
address this issue from four different, but clear- 
ly linked. perspectives. 

Teleology 
How is the brain's complexity linked to its 
raison d'gtre? That the brain has a function, 
which is to protect the individual (or its kin) in 
its particular ecosystem and to ensure the prop- 
agation of its genome, is the most relevant 

sequences of which can lead to reproductive 
isolation. speciation. and evolution. Any one of 
the things that brains do (such as the seemingly 
simple task of recognizing an odor) invokes 
many ill-understood neuronal operations, often 
referred to as "computations." That brains are 
complex should thus surprise no one. given the 
complicated and many-faceted tasks they solve. 

History 
Everything biological must be considered with- 
in an evolutionary framework. Today's brains 
are the result of 0.6 to 1.2 billion years of 
metazoan evolution (we ignore here unicellular 
organisms, despite their exquisite regulatory 
chemical networks). This vast span of time has 
allowed for a very large number of adaptive 

difference from other large physical systems steps between our stem ancestors and to- 
such as galaxies and their tens to hundreds of day's animal cohort. These iterative elabo- 
billions of stars. Brains have "purpose" while rations might be best captured, perhaps. by 
star clusters have but brute existence. Does this the notion of logical "depth" in complexity 
actually explain why brains are complex'? Let theory (2). How does an evolutionary per- 
us consider what brains do. Brains sense spective help explain brain complexity? We 

focus on two aspects 
The first is -based on the conceot of 
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o f  Biology, and 'Division o f  Engineering and Applied 

"evolvability." Today's species owe their ex- 
Sciences. California Institute o f  Technoloev. Pasadena, istence to the of their ancestors to 

-2. 

CA 91 125, USA. adapt and evolve. We can thus assume that 
'To whom correspondence should be addressed. E- evolvabilit~, the capacity of genes to mutate 
mail: koch@klab.caltech.edu and modify an organism's genotype without 

jeopardizing its fitness, must have given a 
selective advantage to those organisms who 
had it in higher degree. What features favor 
evolvability, and do these features engender 
complexity? Gerhart and Kirschner ( 3 ) ,  in 
their book  cell.^, Et~~ht?o.~ and E~~olutiotz, 
describe Conrad's ( 4 )  ideas on the subject. 
Evolvability should be favored by organismic 
compartmentalization, redundancy. weak and 
multiple (parallel) linkages between regula- 
tory processes. and. finally, component ro- 
bustness. These features all imply that evolu- 
tion can only tinker with a system success- 
fully if many of its constituents and coupling 
links are not essential for survival of the 
organism. Hence. the probability of obtain- 
ing, through the vagaries of evolution, a brain 
that does many things well with a single. 
pluripotent network must be very low. In 
contrast. the probability of evolving brains 
with separated subsystems-some for con- 
trolling basic functions such as respiration. 
threat detection, and nursing and others for 
more subtle functions such as exploratory 
behavior or memory of places-must be 
greater. It is therefore reasonable to assume 
that such indirect pressures should lead to 
systems replete with specialized circuits, par- 
allel pathways. and redundant mechanisms. 

The second issue concerns the relation be- 
tween optimality and complexity of brain de- 
sign. Anyone who has studied the perfomiance 
of neural circuits can only be struck by their 
efficiency. We. like flies. can detect single pho- 
tons and, within minutes, adapt to the enor- 
mously high photon fluxes of broad daylight 
(5) .  The information rate of single motion-sen- 
sitive neurons in the fly's brain is close to the 
fundamental limit set by the spike train entropy 
(6). Such high efficiency might lead one to 
think that only simple designs (ones drawn 
from first principles) could possibly work so 
well. Not so. 

Take the wiring of the early visual system of 
flies. Insects use very small external lenses for 
optics. To obtain a large field of view, insects 
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juxtapose many (1 000 to 30.000) lenses as well 
as their associated neural machinery (omma- 
tidia) (5 ) .  This has advantages: An image is 
constructed from a mosaic of pixels, and no 
optical pinhole is needed. The eye can be small 
and yet cover a wide visual field. However, this 
comes at a price: Tiny lenses are more severely 
limited by diffraction than larger ones. In most 
insects. the photons penetrating each omrnatid- 
ium are guided to hit six main photoreceptors 
whose phototransducing segments are inter- 
mixed. Hence, each one of these six photore- 
ceptors "sees" the same scene, and the global 
image resolution is given by the spacing be- 
tween ommatidia. In fly eyes, in contrast, all six 
photoreceptors have separate phototransducing 
segments. thereby increasing spatial resolution 
(5). Because neighboring lenses focus light 
from overlapping parts of the world, two spe- 
cific photoreceptors in neighboring onunatidia 
will catch photons from the same source. To 
exploit this feature, the axons of these two 
photoreceptors converge to the same second- 
order neurons so as to increase efficiency. Con- 
versely. the six photoreceptors within one om- 
matidilun diverge to six different second-order 
cells (Fig. 1A) (5). As a consequence of this 
peculiar optimal design, the spatial mapping 
between consecutive neuronal processing stag- 
es needs to be more intertwined in a precise 
manner. In conclusion, evolution is a remark- 
able engineer. but imposes complexity. 

Structure 
Brain complexity is reflected in the complexity 
of its structural makeup. At the most elementa- 
ry level. voltage- and neurotransmitter-gated 
ionic channels of all types are found through- 
out the animal kingdom. The genome of the 
worm Caerzorhabditis elegans contains se- 
quences for 80 different types of potassi- - .  . . 

um-selective ion channels, 90 ligand-gated 
receptors, and around 1000 G protein- 
linked receptors (7). The combinatorial 
possibilities are staggering for a nervous 
system with only 302 neurons. Aplysia cali- 
fornica. a marine mollusk, expresses volt- 
age-dependent glutamate receptors whose 
actions underlie. at least partly, associative 
learning in mammalian cortex ( 8 ) .  Dendrit- 
ic trees in mollusks and insects (9) are as 
profusely branched and varied as in a pri- 
mate's brain. The dynamics of the firing of 
a lobster's neurons are at least as rich as 
those in mammalian thalamus or neocortex. 
And neither can be reduced to canonical 
integrate-and-fire models (10). Exquisite 
molecular machines endow neurons with 
complex nonlinear dynamical properties re- 
gardless of the animal's size or evolution- 
ary lineage. Moreover, these properties are 
not static, but adaptively tunable. Cultured 
neurons artificially prevented from ex- 
pressing a natural dynamic behavior can 
rapidly modify their molecular makeup and 

revert to their original activity pattern (1 1).  
Synaptic properties also are bafflingly var- 
ied. Chemical synapses show a host of 
plastic phenomena whose time-courses 
span at least nine orders of magnitude, from 
milliseconds to weeks, providing a sub- 
strate for learning and memory ( 8 ) .  Trans- 
mitter release is probabilistic and its regu- 
lation can depend very precisely on the 
functional context and modulatory milieu 
(12). In short. no brain, however small. is 
structurally simple. 

This dizzying variety of mechanisms, this 
bottomless bag of exquisite molecular and cel- 
lular gizmos, appears to be there for one rea- 
son-to endow neurons with adaptive, multi- 
stable dynamical properties. Their functions. 
however, cannot be understood without a 
consideration of the systems in which they 
lie. Frustratingly. the converse is also true. 
In a heroic effort. White. Southgate, Thom- 
son, and Brenner (13) mapped the approx- 
imately 600 electrical and 5000 chemical 
synapses connecting the 302 neurons of C. 
elegans (Fig. 1B). Yet, this knowledge by 
itself failed to provide realistic ideas about 
the function and dynamics of this minimal 
nervous system, simply because we know 
very little about the intrinsic and synaptic 
properties of its neurons (14). Brain circuits 
are not Boolean networks, where connec- 
tivity is everything. They are not made of 
static, linear neurons, isotropic nets, or con- 
stant connection weights. Recent theoreti- 
cal work exploring the complexity and dy- 
namics of food-web networks in ecology and 
incorporating analog connection weights and 
nonlinear elements (15) might have applicabil- 
ity to neuroscience. 

A more realistic accounting of the dynamic 

nature of neuronal ensembles and their nonran- 
dom, inhomogeneous connectivity topologies 
has been incorporated by Tononi and his 
colleagues into a formal definition of "neu- 
ronal complexity" using concepts drawn 
from information theory (16) .  These con- 
cepts express the degree of interactions 
between elements of a neuronal population. 
The complexity of a group of neurons 
should be low if they fire independently 
(although total entropy will be high) or if 
they are all strongly correlated. Complexity 
will be high if a large number of subassem- 
blies of varied sizes can be formed within 
the population. Given the nonstationary na- 
ture of neuronal activity and oui limited 
ability to sample activity from more than a 
handful of neurons simultaneously. it re- 
mains an open challenge to apply this no- 
tion of complexity to spike trains recorded 
from behaving animals. 

Codes and Computation 
We are beginning to understand the codes used 
by spiking neurons to transmit infom~ation 
about the environment from periphery to deeper 
brain structures. Considered individually. many 
neurons use an instantaneous firing rate code 
(1 7) with a resolution on the order of a few 
milliseconds. The brain, however. most likely 
represents the world using neural assemblies, 
and population codes could be more subtle. 
Although some neurons integrate inputs regard- 
less of their temporal structure (18), evidence 
exists that the relative timing of action poten- 
tials matters (19). even allowing for combina- 
torial spatiotemporal codes (20). These altema- 
tives should not be seen as exclusive, but rather 
as complementary and dependent on the de- 
mands of the task the animal must cany out. 

Fig. 1. C~rcu~t complexity In nervous systems A 
(A) Project~ons of photoreceptor axons from 
the retlna (top) onto the lamma (bottom) of 
the fly's "neural superposltlon eye " Note the 
organ~zed divergence of the SIX maln receptor 
axons wlthln one retl- 
nal bundle and the~r 
preclse rearrangement .. ,, 3 

wlthln SIX new lamlnar 
bundles [Reproduced 
wlth permlsslon from Am 

(28)] (B) Clrcu~t d~a-  
gram of the nervous 
system of the worm 
C elegans (chem~cal 
synapses only) Its 302 
neurons have been 
pooled so that bllater- 
al groups of two to s ~ x  

/' ' equivalent neurons 
\ .n are coalesced lnto sln- 

m -- 
gle nodes Connec- ---, --- L ~ $ 

\ \ Am 

9 ,  ,,, I *\ - =--- 
t~ons are represented 2-3- A"A - 

Lo 'ur 
- - 

by llnes Connectlv~ty 
alone falls to explaln 
or pred~ct clrcult func- 
t ~ o n  [Reproduced w~th permlsslon from (29)] 
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One well-explored code is that found in the 
insect analog of the mammalian olfactory bulb 
(Fig. 2) (20, 21). In this system of about 1000 
neurons, individual odors are represented by 
dynamical assemblies of about 100 neurons, so 
that information useful to downstream net- 
works and to the animal is decoded from both 
the identity of the activated neurons and the 
relative timing of their activity (21). Population 
codes can thus be combinatorial in both space 
and time, adding several levels of complexity 
that are still not widely appreciated. 

It is important to emphasize the stark dif- 
ferences between brains and computers. Indi- 
vidual transistors are homogeneous and non- 
adaptive. The interconnectivity of transistor 

Fig. 2. Neural code complexity. (A) lntracellular 
recordings from a projection neuron in the locust 
antenna1 lobe, in response to  two odors (spear- 
mint and lemon). Note the highly dynamic and 
stimulus-specific voltage waveforms composed 
of slow (nonperiodic) and fast (periodic) modula- 
tions as well as action potentials (dipped) (data 
from C. Laurent). (B) Simultaneously recorded 
pair of projection neurons and their responses to 
nine different odor blends (capital letters), 
grouped in six spatiotemporal patterns. Each col- 
ored box represents the occurrence of a spike 
within a 50-ms window. Each number or color 
represents the rank order of a spike in the tem- 
poral sequence. Odor quality information is con- 
tained both in the identity of the activated neu- 
ron subset and in the timing of each neuron's 
recruitment. The code is thus a combinatorial 
spatiotemporal code. [Adapted from (20)] 

gates is very low. In the central processing 
unit of any microprocessor, one gate is con- 
nected, on average, to two or three others. 
This pales in comparison to intemeuronal 
convergence and divergence ratios, often in 
the tens of thousands. The standard von Neu- 
mann computer architecture enforces a strict 
separation between memory and computa- 
tion. Software and hardware, which can be 
easily separated in a computer, are complete- 
ly interwoven in brains-a neuron's biophys- 
ical makeup is intrinsically linked to the com- 
putations it canies out (for instance, to detect 
temporal coincidence). Furthermore, brains 
wire themselves up during development as 
well as during adult life, by modifying, up- 
dating, replacing connections, and even in 
some circuits by generating new neurons 
(22). While brains do indeed perform some- 
thing akin to information processing, they 
differ profoundly from any existing computer 
in the scale of their intrinsic structural and 
dynamic complexity. 

Complexity: A Useful Framework? 
While everyone agrees that brains consti- 
tute the very embodiment of complex adap- 
tive systems and that Albert Einstein's 
brain was more complex than that of a 
housefly, nervous system complexity re- 
mains hard to define quantitatively or 
meaningfully. A bee's brain for instance, 
with about a million neurons and stupen- 
dously intricate microcircuits (23), controls 
very elaborate behaviors (24). The brain- 
to-body-mass ratio of sharks and rays is 
very close to that of mammals, and much 
greater than that of bony fish, amphibians, 
or reptiles. The size of the neocortex in 
toothed whales, normalized for its body 
size, ranks with that of primates above all 
other mammals (25). If forced, how would 
you rank complexity among these brains? 

Any realistic notion of brain complexity 
must incorporate, first, the highly nonlinear, 
nonstationary, and adaptive nature of the neu- 
ronal elements themselves and, second, their 
nonhomogeneous and massive parallel pat- 
terns of interconnection whose "weights" can 
wax and wane across multiple time scales in 
behaviorally significant ways. For now, per- 
haps the most obvious thing to say about 
brain function from a "complex systems" per- 
spective is that continued reductionism and 
atomization will probably not, on its own, 
lead to fundamental understanding. Each 
brain is a tremendously heterogeneous patch- 
work. Understanding function of any of its 
parts requires a precise knowledge of its con- 
stituents but also of the context in which this 
part operates. 

Finally, what of any possible link between 
the complexity of nervous systems and those 
most tantalizing of phenomena, consciousness 
and subjective experience? Tononi and Edel- 

man (26) propose that the existence and expres- 
sion of consciousness is related to complexity. 
A positive correlation between complexity, as 
measured across large neuronal ensembles over 
a fraction of a second or longer (16), and 
consciousness is not implausible. Alternatively, 
it is at this time equally plausible that con- 
sciousness arises out of a novel feature of cer- 
tain types of brains, some cellular or circuit 
property with a unique molecular, anatomical, 
or physiological signature (27). Only time will 
tell if and how the mind arises out of 
"complex" brains. 
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