
the threads of complexity in chemical sys- 
tems. The promise of this new activity is 
paiticularly rich for macromolecules (includ- 
ing biologically relevant macromolecules), in 
which opportunities for the existence of many 
different nlolecular confolmations, each with 
different properties. are high. 

At the core of chemical interest in complex- 
ity are the hvo fundamental problems concem- 
ing life. that is, wing  to understand (i) how 
collections of molecules can give rise to the 
varieties of behaviors that characterize cells and 
organisms and (ii) how individual inolecules 
might have originally assembled into collec- 
tions that had the characteristics of life (energy 
dissipation, self-replication, and adaptation). 
Whether the understanding of complexity at the 
molecular level will reveal important elements 
of the structure of life is unclear. We do not 
know if it is conceptually possible to connect 
molecular-level processes to organismic behav- 
ior detelministically. Certainly. knowing every- 
thing about the electronic properties of Si and 
the operating characteristics of transistors tells 
ve1-y little about the higher level characteristics 
of computers. 

Fortunately, there is also the inverse op- 
poitunity: learning from biological complex- 
ity as a method of stimulating new chemistry. 
With this opportunity, there is great reason 
for optimism. Biological systems display 
such a large number of remarkable capabili- 
ties (and capabilities that are so clearly com- 
plex) that their analysis will unquestionably 
be a rich source of models for new areas of 

chemistry. ANNs are one example of a suc- 
cessful transfer of information about a com- 
plex biological system to nonbiological ap- 
plications. ANNs were developed, in part, as 
a tool with which to model the brain. To what 
extent current AhWs do so is a continuing 
subject of discussion, but the effort to make 
the connection between AhWs and brains 
(and to leain from the brain) has unquestion- 
ably expanded the capabilities of computa- 
tion. In this same sense. biology (and perhaps 
also complex materials) offers examples of 
complex systems that show types of behavior 
that are now uncommon in nlolecular chem- 
istry. One of the opportunities in fundamental 
chemical research is to learn from biology 
and to use what is leained to design nonbio- 
logical systems that dissipate energy, repli- 
cate, and adapt. Whether such systems would 
model life is moot; they would unquestion- 
ably be very interesting and probably very 
important. 
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Complexity in Biological Signaling Systems 
Gezhi ~ e n g , '  Upinder S. ~halla, '  Ravi lyengarl* 

Biological signaling pathways interact with one another to form complex 
networks. Complexity arises from the large number of components, many 
with isoforms that have partially overlapping functions; from the connections 
among components; and from the spatial relationship between components. 
The origins of the complex behavior of signaling networks and analytical 
approaches to deal with the emergent complexity are discussed here. 

Signaling in biological systems occurs at mul- 
tiple levels. In its broad sense. one could use the 
tell11 "signaling" to describe events ranging 
from interactions between single inolecules to 
interactions between species in ecological sys- 
tems. The aim here is to deal with complexity in 
signaling at a single level: intracellular signal- 
ing within a cell. We will outline how current 

and forthcoming tools in biochemistry, cell and 
molecular biology, and physiology. as well as 
theoretical analysis and simulation methods, 
may be used to study this complex system. 

In a general sense. the adjective "co~nplex" 
describes a system or component that by design 
or ftnction or both is difficult to understand and 
verify. In the past decade, analysis of complex 
systems (the field of complexity) has emerged as 

them, the number and intricacy of conditional 
branches, the degree of nesting, and the types of 
data structures. Biological signaling networks 
possess many of these attributes, as well as dy- 
namic assembly. translocation, degradation, and 
channeling of chemical reactions. All of these 
activities occur sin~ultaneously, and each com- 
ponent participates in several different activities. 

One approach to understanding complexity 
is to stait with a conceptually simple view of 
signaling and add details that introduce new 
levels of complexity. As this process unfolds, it 
becomes clear where experimental data end and 
how progressively more difficult it becomes to 
understand the system as a whole in teims of 
the functional details of individ~~al components. 

a distinct facet of mathematical and physical 
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C O M P L E X  S Y S T E M S  . 
stream component of the signaling pathway 
interacts with an external source and transfers 
information about that interaction to an effector 
that is capable of eliciting a biological response. 
This scheme is illustrated in Fig. 1A. Bacterial 
two-component signal transduction ( I )  is one 
example of such a system. Some mammalian 
signaling pathways, such as the P-adrenergic 
receptor to the glycogen-phosphorylase path- 
way, can also be considered within this frame- 
work. The properties of such a simplified sys- 
tem are completely determined by the concen- 
trations of each of the components and the 
reaction rates. Here the role of the many types 
of signaling components, including receptors, 
transducers, enzymes, and diffusible second 
messengers, is simply to give different signals a 
unique identity. Each pathway can be thought 
of as a wire canying information. Because the 
well-stirred cell does not have wires that are 
spatially separated by insulators, the identity of 
the signals must be carried by distinct mole- 
cules so that the information can be processed 
in an orderly fashion. 

Even in this highly oversimplified analy- 
sis a first order of complexity is evident: The 
vast array of signaling molecules and iso- 
forms with apparently redundant signal trans- 
fer functions often have different kinetic 
properties. This makes the estimation of re- 
action rates and reactant concentrations a cru- 
cial issue in obtaining an accurate quantita- 
tive description of the system. Unfortunately, 
the measurements of these system parameters 

are often not available or possible with cur- 
rent technologies. Nevertheless, analysis of 
linear pathways provides valuable insights 
into system properties such as threshold stim- 
uli required to trigger a response (2) and time 
courses for signal output. Mathematical 
analysis of enzyme function has long been 
an integral part of rigorous biochemistry, 
and the various models of regulation de- 
veloped for enzymes (3) have been useful 
in analyzing signaling systems. These anal- 
yses provide mechanistic insights into the 
interactions between individual compo- 
nents, such as between ligands and recep- 
tors ( 4 ) ,  as well as between intracellular 
components of the system (5). Often such 
mathematical analyses have served to dis- 
criminate between alternative reaction 
mechanisms ( 6 ) .  

Interactions Between Pathways 
A simple threecomponent transmembrane sig- 
naling system is depicted in Fig. 1A. This orga- 
nization is representative of many heterotrirneric 
GTP-binding protein (G-protein) signaling 
pathways. But the interaction between pathways 
necessitates a first elaboration of this sim~le 
scheme. Distinct pathways now become parts of 
an interacting signaling network. Each interac- 
tion between components in different pathways 
is a potential site of computation (7). Therefore, 
in a system consisting of two interactive path- 
ways of n components, each one would, in prin- 
ciple, need to collect data of n2 interactions (one 

for every possible pair of interactions). Figure 
1B describes a simplified situation where inter- 
actions occur only between two adjacent com- 
ponents. Such simplification often reflects the 
specificity in interactions between pathways. 
Even in such simple situations, the experimental 
challenges are considerable. In addition to spec- 
ifying the concentrations of the reactants and rate 
constants for each step of each pathway, one 
needs an accurate estimate of how these values 
are affected by the presence of the interacting 
pathway. Intuitive approaches to the analysis of 
such networks are difficult. Nevertheless, such a 
system is amenable to quantitative analysis using 
reductionist chemical data from reconstituted 
test tube experiments. We have adapted GENE- 
SIS, a neural network simulator, to analyze a 
simplified network consisting of four different 
interacting signaling pathways. Such a network 
exhibits interesting emergent properties, includ- 
ing integration of signals across different time 
scales, generation of distinct outputs depending 
on the amplitude and duration of the input sig- 
nals, and the presence of feedback loops that 
behave as bistable switches to process informa- 
tion flow through the network (8). Although this 
first glimpse of emergent complexity appears to 
be intriguing, rapidly accumulating experimental 
evidence suggests that several other consider- 
ations need to be taken into account in order to 
develop a minimally accurate picture of a living 
cell. Prime considerations among these are com- 
partmentalization and regional organization of 
signaling components. 

A B , 
I r\ , 

1 

b 
Pairs of  interactions: 2 

Concentrations: 6 
Pairs o f  interactions: 11 

Concentrations: 3 
Rate constants: 4 Rate constants: 22 

Fig. 1. The increasing complexity of signaling pathways inside a cell. In 
each panel, k is the rate constant for the first pathway and kt represents 
constants for the second pathway; plus and minus signs indicate forward 
and reverse, respectively; 1 and 2 indicate pathways 1 and 2. (A) A simple 
three-component pathway. The arrows indicate the direction of the 
signal flow. Each component interacts only with its adjacent component. 
This system represents a typical design of a transmembrane C protein 
signaling pathway, and the lettering for the components R (receptor), G 
(G protein), and E (effector) reflects this. (B) Two interactive signaling 
pathways in one compartment. Here, interactions are restricted to  
adjacent partners t o  represent real situations and limit the complexity 

of the system. (C) A complex system consisting of two interactive- 
pathways in each of three interacting compartments, colored yellow, blue, 
and green. Such a system could represent the first level of compartmental- 
ization of the cell into membrane, cytoplasmic, and nudear compartments. 
C, cytoplasmic components; K, kinase;' T, transcription factors; 'N, nucleic 
acids: P.   rote in comDonents in the nudeus. The communications between 
the ~om'~artments are carried out by the translocation of the signaling 
molecules. The number of interactions and the minimal number of param- 
eters (concentration of reactants plus rate constants) for each system is 
given. The increasing complexity in terms of the number of parameters 
needed to  specify the system can be readily seen. 
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C O M P L E X  S Y S T E M S  - 
Compartments 
Compartmentalization introduces several levels 
of complexity. First, many signaling components 
and their substrates are anchored in the plasma 
membrane. The plasma membrane provides a 
milieu for biochemical reactions that is quite 
distinct from the cytoplasm in its properties. The 
lipid environment enables a new class of reac- 
tions involving hydrophobic interactions. It also 
introduces a two-dimensional reaction environ- 
ment, with alterations in component access, ef- 
fective concentrations, and component orienta- 
tion relative to the membrane. Organelle forma- 
tion leads to a M e r  expansion of the possible 
cellular microenvironments, each with different 
biochemical properties and signaling capabili- 
ties. Second, the separation of reactions in space 
allows the same molecules in the same cell to 
cany entirely different signals. In other words, 
we already have signaling "wires" distinguished 
by the identity of the molecules in the pathways. 
Compartmentalization duplicates these existing 
wires and separates them in space. This multi- 
plies the number of signals they can cany. 

These features cause trouble experimental- 
ly. Techniques for measuring rates and concen- 
trations of reactants in their natural lipid or 
compartmentalized environments are often not 
available, and even when they are, the tech- 
niques require progressive refinement. The 
measurement of Ca2+ concentrations in or- 
ganelles, for example, has required several gen- 

erations of new probes to accurately estimate 
the Ca2+ concentrations in intracellular stores 
(9). Simulation studies have provided a usel l  
framework for analyzing systems at this level. 
Studies of Ca2+ oscillations (10) and Ca2+ 
waves (ll),  for example, bring in testable hy- 
potheses about the critical signaling interactions 
for information transfer within the cell. Even 
when there are a minimal number of compo- 
nents that move between compartments, the 
number of parameters needed to accurately de- 
scribe the system becomes large, and experi- 
mental approaches to determining these param- 
eters stretch the limits of current technologies. 
A three-compartment system with six translo- 
catable components is shown in Fig. lC, and 
the complexity of such a system is readily 
apparent. 

Scaffolds and Reaction Channeling 
In addition to subcellular compartmentalization, 
recent research has highlighted the role of mo- 
lecular scaffolds that provide regional organiza- 
tion by assembling signaling components into 
functional complexes. The cytoskeleton is a dy- 
namic framework on which the cell builds this 
regional organization. The most dramatic exam- 
ple of its dynamism is cell division. In the qui- 
escent cell, it is both the substrate and the scaf- 
fold for signaling processes. A prime example of 
its dual role is the synapse. Here the cytoskele- 
ton, in particular the pre- and postsynaptic struc- 

Fig. 2. Four major signaling pathways in the postsynaptic region of a neuron that combine to form a 
local signaling network. The major linear routes of signal flow are depicted by the thick arrows of four 
different colors: orange [phospholipase C (PLC) pathway], pink (Ras pathway), green (adenylyl cydase 
pathway), and blue [Ca2+/calmodulin (CaM) pathway]. The interactions between different pathways are 
represented by black lines with arrow (representing activation) or a dot (representing inhibition). 
Although most major interactions in the network are shown, these connections are not meant to be 
all-inclusive; additional connections could exist. The three-colored background represents three different 
cell compartments: the plasma membrane (light yellow), cytosol (light blue), and nucleus (light green). 
Some of the signaling proteins that translocate between different compartments are shown in both 
compartments. Examples include MAP kinase, which when activated translocates from the cytoplasm to 
the nucleus to phosphorylate and activate transcription factors; and the transcription factor CREB, which 
upon phosphorylation by protein kinase A (PKA) translocates to  the nucleus. 

tures, are the anchors for a wide array of synaptic 
signaling molecules. Consequently, modification 
of the synaptic cytoskeleton is a likely candidate 
for causing long-term changes in synaptic effi- 
cacy (12). 

The term "scaffold" is also used for a new 
class of signaling proteins that do not have in- 
formation transfer capability of their own but 
interact with multiple signaling proteins in a 
pathway. The scaffold provides an assembly line 
along which a series of enzymes process their 
substrates in a well-defined sequence and with 
an efficiency and specificity that are orders of 
magnitude higher than would be possible in free- 
ly diffusing systems. Scaffolds for the MAP 
kinase pathways are prototypical examples of 
such organization, and a number of other scaf- 
fold proteins have been identified (13). In vitro, 
this organization can result in reaction channel- 
ing, leading to dramatic increases in the efficien- 
cy of signal transfer as well as to enhanced 
specificity of signal flow, despite possible cross- 
reactivity with other pathways that are apparent 
in the test tube. A striking example of reaction 
channeling is the synthesis machinery for many 
antibiotics, which are composed of enzyme 
modules that are physically and chemically 
attached to each other (14). The substrate . , 

molecule proceeds stepwise down the chain of 
enzymes and is systematically extended and 
modified in a manner reminiscent of a factory 
assembly line. Efficiencies in signal transmis- 
sion can be achieved by similar organization, 
and scaffolds are likely to play a role in 
achieving such efficiencies. A key experimen- 
tal challenge is to accurately quantify these 
efficiencies. 

Within the cell, signals in different compart- 
ments do not work in isolation. Com~artments 
communicate with each other via translocating 
molecules. Translocation is often an integral pi 
of the signal flow. Figure 2 shows four interact- 
ing pathways in the postsynaptic region of a 
neuron. These pathways include signaling com- 
ponents that can translocate from plasma mem- 
brane to cytoplasm and vice versa or from cyto- 
plasm to nucleus. The major linear routes of 
signal flow are color-coded, and the cross-con- 
nections both positive (arrows) and negative 
(dots) are in black. The complexity of even such 
a minimal network is immediately obvious. 
However, most of these interactions can be iden- 
tified, parameterized, and analyzed (8). Thus, the 
major hurdle is the development of methods to 
track, organize, and analyze the large number of 
parameters needed to specify such a system rath- 
er than the development of new methods of 
mathematical analysis. 

Although compartmentalization confines 
certain interactions between components, molec- 
ular &al%cking between compartments raises the 
number of system parameters by at least another 
power. This qualitative shift in complexity (and 
the relative paucity of understanding of it) also 
marks the border between biochemistry and cell 
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biology. One needs to consider tra11spo1-t as a 
m hole aen. indust17 in the cellular economy. The 
movement of signals may be as simple as diffil- 
sion down coacentratioa gradients (although the 
formation of those gradients may not always be 

many of these questions are daunting. the) ma) 
turn out to be more experimentall) tractable than 

lution imaging. Selective expression of these re- 
posters in combination with h i g l - r e s o l ~ t i o  ~ i s u -  

the spatial and organizational questions in cell 
biolog) described ab01-e. The defining feature. 
n-hich ~nakes  the system as a whole extremely 

alization teclu~iques should allow the semi-quan- 
titative estimation of molecular concentratioas 
and interactions. Together \\it11 the knowledge 

simple) or as co~nplex as the ~reritable rail aet- 
n-orls of the actin-tubulin cyrosl<eletoa. \111ich is 
tra\,ersed b) c)toplasmic motors with precisel) 
addressed proteins directed to their destinations 
by target sequences. The endoplasmic reticullun 

difilcult to aaalyze, is that it is not a machine 
(11on.ever complex) dra~vn to a u-ell-defined de- 
sign. but a machine that can and does coastantly 
rebuild itself within a range of variable parame- 
ters. For a systematic approach. what is needed is 
a relatiwly clear definition of the bo~rnda1-y of 
this ~,ariabiliv. In principle. these boundaries are 

available from a completely sequenced genome. 
these should enable s>stelllatic monitoling of 
1na11y levels of signaling reactions in vivo and 
simultaneously keep track of changes in cellulas 
stl-uctt~re. Likewise, the computational tools for 

carries out the enomlous job of sorting mole- 
cules betn een the aucleus. several organelles. 

handling this vast of data are stalting to 
take shal3e. Database and Web-based quely s) s- 

the cell surface. and the outside and does a great 
deal of molecular assembly on the side. A com- 
parison 1%-ould be if the post office not only 

detew~ined b) an as-yet-u~lkno~vn combination 
of intrinsic capability and evtelllal inputs. The 
balance betn een intrinsic capability and the re- 

telns 011 comparable scales already exist for pro- 
tein structure and the genome projects (16). Ad- 
\-ances in computer hardware have brought 

reliably supplied components from a dozen dif- 
ferent sources but also assembled them en route 

sponse to evte~llal signals is likely to be a central 
issue in understanding gene expression. This is a 

large-scale calculations and fast graphic visual- 
ization out of the dolllain of supercomputer cen- 

and delivered a fullctio~ling co~nputer to your 
door. 

difficult situation to analyze. and cul~ently n.e 
are unsure of how to approach it. Ke~~e~-theless. it 

ters onto reasonably priced machines in the lab- 
oratory. As is the case with genome databases, 

.Although the role of the endoplasmic re- 
ticululn in the assembl) of the cell is now 
a-ell recognized, its role in signaling is just 

is the cnlx of one of the classic mysteries of 
biolog) : holv the de\ eloping organism starts 
from a single cell, r h i c h  di\-ides and ~nodifies 

the lnain re~naining issue is analysis. Sinlulation 
teclu~iques for handling thousands of single-mol- 
ecule signaling reactions taliillg place in the in- 

starting to be understood. Theoretically. com- 
pa~.tmentalizatiol~ and molecular trafficking 
using the endoplasmic reticulum introduce a 
qualitati~re difference in the kinds of  analysis 
that could be done. e l  en if all the data \\ere at 

itself into many diffesent classes of cells and 
Inan) specific shapes. yet produces a complete 
organism \vith little individual ~~ariat ion.  A large 
bod) of emerging data indicates that early del el- 
op~nent occurs through signaling interactions 

tricate cellular geometly will require (at least) a 
combination of finite element anal) sis and Mon- 
te Carlo methods. Although these tecluliques are 
nell developed in engineering contexts. we are 
not axare of any applications that approach the 

hand. C11emistr)- is no\\ replaced by reaction- 
d i f f ~ ~ s i o n  s) stems of complex geometly. and 

that are genetically p r o ~ a ~ m n e d .  whereas at the 
later stages. the development of complex traits is 

scale and complexity of the geolnetry and inter- 
actions in the cell. In addition to the purel) 

each cellular compartment has its o n  n set of 
reactions that need to be independentl>- ana- 
lyzed first and then analyzed in a progressi\,e- 

dependent on evtelnal inputs as nell. A quanti- 
tatk e description of this entire process IT ould be 
a culmination and synthesis of much of biology. 

numerical issues. it is a significant challellge 
to develop user interfaces that will enable 
experimental biologists who are not expert 

I )  interdependent manner, so that the effect of  
each compartment on all others is accounted 

computer progsammers to use such complex 
con113utational p rogra~ns  with re1atix.e ease. Approaches to  Analyze Complex 

Signaling Networks for. And in the dual cell assembly and sig- 
naling role of  the c!.toskeleton and compart- 

Several efforts are under way to develop 
interfaces with databases and simulators that A lecul~ing theme in our discuhsion is the ne- 
can meet these requirenlents ( I  7 )  ments. we can see the begilllli~lgs of a deeper 

l e ~ e l  of analytical complexity: The system is 
self-modifying. This problem reaches its full 
expression in genetic regulation. 

cessity for tightly coupling experiments and the- 
ory in particular conlputer simulations. There is 
simply too nluch essential detail in biological 
signaling for the unaided 11~1n1an lnillti to orga- 
nize and understand. It appears that a paradigm 

Benefits of Understanding Complex 
Signding Networks 
The origins of many human diseases. includ- 

Regulation in the Nucleus shift from the ilua1itati~-e to the quantitati\-e is 
taliing place in biology: that \I-e are moving from 
a descriptixe to a predictive science. Gene dis- 
cover? and the consequellt biochemical charac- 
terization of gene products has led to the accu- 

ing cancer. diabetes, and neural disorders, are 
in the fullctiolling (and malfi~nctioning) of 
signaling components. Often malfi~nctio~ling 

The core signaling system of the cell is. of 
course. the genetic machineiy. LVe are already 
remote from our initial description of cellular 
signaling as a group of chemical reactions in a 

of  a single entit> doea not cause problems, 
but the conlblned effecta of~nul t ip le  malf~~iu~c- 

well-stirred test tube. Each ofthe previous levels 
of cellular signal flow has introduced ne\\- levels 

mulation of a treasure trox e of quantitatile prop- 
elties of these gene products. inally of nhich are 

tioning co~nplexes are substantial. An under- 
standing of h o \ ~ -  individual colnponents f~ lnc-  
ti011 within the context of the entire system 
under a variety of situations should be helpfill 
in ullderstaildillg lvhy illteractioils between 

of complexity in experiment and anal>-sis. At 
face I alue. the genetic machinel? is based on the 
same set of coiilponents-e~lzy1l1es, con1pa1-t- 
ments, and tightly controlled signal trafficking- 
plus a gigab>te-sized program ~t-ritten into the 
DNA. Indeed. fairly accurate abstractions of 
sonle sinlple genetic systems can be made in 
terms of nenvorlts of genes, u ithout dealing \vith 
the intricate details of the  machine^> in\ ohred 
115). It is a ~llajor experinlental challenge to 
understand all the biochemical reactions in the 
nucleus. These include protein-protein and pro- 

components of signali~lg s)-stems. What is no\\ 
needed is a twofold effort to develop a signaling 
database and the tools to integrate these data. .A 
systematic cataloging of proteins, then lipids. 
conlplex sugars. and other signaling ~nolecules 

aberrant signaling patll\vays often result in 
pathopl~ysiology. Ullderstailding complex 

within the various organelles of a nlamnlalian 
cell. includillg the locations. concentrations. and 
core kinetic properties. would in itself be a lrely 
large project requiring enonnous resources. The 
anal>-tical tools 13 ould rely on emerging databas- 
es. Inteiuet access. and visualization and simu- 
lation techniq~~es. 

signaling networks may also provide a clear 
~nolecular  view of the interactions of individ- 
uals with their environment. 
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Complexity and the Nervous System 
Christof ~ o c h ' , ~ *  and Gilles Laurent' 

Advances in the neurosciences have revealed the staggering complexity of 
even "simple" nervous systems. This is reflected in their function, their 
evolutionary history, their structure, and the coding schemes they use t o  
represent information. These four viewpoints need all play a role in any 
future science of "brain complexity." 

From 1.5 lulograms of flaccid matter, convolut- through many different modalities by extracting 
ed folds. about 100 billion neuronal compo- relevant patterns (shapes. sounds, odors, and so 
nents, hundreds of trillions of interconnections, on) from a noisy, nonstationary. and often un- 
many thousand kilometers of cabling. and a predictable environment. Brains control and co- 
short cultural hlstory emerged calculus, S~t,an ordmate movements of jointed (hmbs) as well 
Lake, Kind of Blue, the Macintosh, and The as soft (tongues) appendages, form memones 
Master and Margarita. The brain is often cas- with lifetimes that can well exceed those of the 
ually described as the most complex system in molecules holding them, and construct implicit 
the unir erse What could thls mean9 Only a and explicit models of the morld and its dynam- 
decade ago, "complex" simply meant made of ics Aboke all. brains control behablor, the con- 
many interrelated parts (the word derives from 
"braided together"). Within mathematics and 
the physical sciences, the term "complexity" 
has recently acquired a number of narrower but 
technical definitions (1). Our task as neurosci- 
entists is to assess how complexity-the con- 
cept or the science-can help us better under- 
stand the workings of nervous systems. We 
address this issue from four different, but clear- 
ly linked. perspectives. 

Teleology 
How is the brain's complexity linked to its 
raison d'gtre? That the brain has a function, 
which is to protect the individual (or its kin) in 
its particular ecosystem and to ensure the prop- 
agation of its genome, is the most relevant 

sequences of which can lead to reproductive 
isolation. speciation. and evolution. Any one of 
the things that brains do (such as the seemingly 
simple task of recognizing an odor) invokes 
many ill-understood neuronal operations, often 
referred to as "computations." That brains are 
complex should thus surprise no one. given the 
complicated and many-faceted tasks they solve. 

History 
Everything biological must be considered with- 
in an evolutionary framework. Today's brains 
are the result of 0.6 to 1.2 billion years of 
metazoan evolution (we ignore here unicellular 
organisms, despite their exquisite regulatory 
chemical networks). This vast span of time has 
allowed for a very large number of adaptive 

difference from other large physical systems steps between our stem ancestors and to- 
such as galaxies and their tens to hundreds of day's animal cohort. These iterative elabo- 
billions of stars. Brains have "purpose" while rations might be best captured, perhaps. by 
star clusters have but brute existence. Does this the notion of logical "depth" in complexity 
actually explain why brains are complex'? Let theory (2). How does an evolutionary per- 
us consider what brains do. Brains sense spective help explain brain complexity? We 

focus on two aspects 
The first is -based on the conceot of 

'Computation and Neural Systems Program, Division 
o f  Biology, and 'Division o f  Engineering and Applied 

"evolvability." Today's species owe their ex- 
Sciences. California Institute o f  Technoloev. Pasadena, istence to the of their ancestors to 

-2. 

CA 91 125, USA. adapt and evolve. We can thus assume that 
'To whom correspondence should be addressed. E- evolvabilit~, the capacity of genes to mutate 
maiL: koch@klab.caItech.edu and modify an organism's genotype without 

jeopardizing its fitness, must have given a 
selective advantage to those organisms who 
had it in higher degree. What features favor 
evolvability, and do these features engender 
complexity? Gerhart and Kirschner ( 3 ) ,  in 
their book  cell.^, Et~~ht?o.~ and E~~olutiotz, 
describe Conrad's ( 4 )  ideas on the subject. 
Evolvability should be favored by organismic 
compartmentalization, redundancy. weak and 
multiple (parallel) linkages between regula- 
tory processes. and. finally, component ro- 
bustness. These features all imply that evolu- 
tion can only tinker with a system success- 
fully if many of its constituents and coupling 
links are not essential for survival of the 
organism. Hence. the probability of obtain- 
ing, through the vagaries of evolution, a brain 
that does many things well with a single. 
pluripotent network must be very low. In 
contrast. the probability of evolving brains 
with separated subsystems-some for con- 
trolling basic functions such as respiration. 
threat detection, and nursing and others for 
more subtle functions such as exploratory 
behavior or memory of places-must be 
greater. It is therefore reasonable to assume 
that such indirect pressures should lead to 
systems replete with specialized circuits, par- 
allel pathways. and redundant mechanisms. 

The second issue concerns the relation be- 
tween optimality and complexity of brain de- 
sign. Anyone who has studied the perfomiance 
of neural circuits can only be struck by their 
efficiency. We. like flies. can detect single pho- 
tons and, within minutes, adapt to the enor- 
mously high photon fluxes of broad daylight 
(5) .  The information rate of single motion-sen- 
sitive neurons in the fly's brain is close to the 
fundamental limit set by the spike train entropy 
(6). Such high efficiency might lead one to 
think that only simple designs (ones drawn 
from first principles) could possibly work so 
well. Not so. 

Take the wiring of the early visual system of 
flies. Insects use very small external lenses for 
optics. To obtain a large field of view, insects 
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