
COMPLEX SYSTEMS . 
ing biological networks. At LBNL, for exam- Other challenges loom. Among the are at a real disadvantage," says Chris Over- 
ple, Arkin and his colleagues have begun us- biggest concerns, say researchers and ad- ton, who directs Princeton's bioinformatics 
ing computer models together with experi- 
ments to track how viruses that infect bacte- 
ria "decide" whether to replicate inside their 
host or lie dormant, waiting for a better op- 
portunity. Years of painstak- 
ing experimental measure- 
ments by numerous teams 
have shown that the five 
genes that push the virus ei- 
ther to replicate or lie dor- 
mant are controlled by six 
other genes: four promoters 
that turn on gene transcrip- 
tion, and two terminators that 
either partly or entirely shut it 
off. Embedded in this gene 
play are numerous positive 
and negative feedback loops: 
When one gene called CI 
that promotes the dormancy 
~ a t h  is ex~ressed for exam- 

ministrators, are differences in research cul- center. "Who evaluates you for tenure and 
tures. In physics, for example, postdocs are the quality of your work?" he asks rhetori- 
often treated like junior faculty, whereas in cally. Often, he says, people in one discipline 
biology they typically have far less autono- or another fail to appreciate the work's full 

scope. What's more, discipline-bound fund- 
ing departments within agencies such as the 
National Institutes of Health (NIH) or the 
National Science Foundation can be reluc- 
tant to fund interdisciplinary work seen as ly- 
ing largely outside their area, and grant re- 
view panels made up of researchers in a sin- 
gle discipline may not fully understand an in- 
terdisciplinary project. Whether the money 
will be there to support new interdisciplinary 
programs "is a question we are all worried 
about," says Carlos Bustamante, a biophysi- 
cist at the University of California, Berkeley. 

But NIGMS's Cassman says that his 
agency and others are creating niches for in- 
terdisciplinary science. Last year, for exam- 
~ l e .  NIH announced a new bioengineering . , " " 

pie, it feeds back to amplify complex system. A web of interactions among a genes and initiative to fund multidisciplinary research 
its own expression while di- promoters determines whether it will lie dormant or replicate. (Science, 5 June 1998, p. 15 16). And inter- 
minishing the output of Cro, disciplinary review panels, he says, are like- 
a gene that pushes immediate viral replica- my. Ironing out such differences is "one of ly to follow. "When we've been able to pro- 
tion and release. Outside factors, such as the the biggest problems we face," says Shapiro. mote an area of science, it is because it is 
availability of nutrients and the presence of Promotions and tenure decisions could ready," says Cassman. "From everything I 
competing viruses, also act as inputs*control- also prove to be sticking points. "People who hear about [the systems approach to biolo- 
ling which promoters are turned on and off. work at the boundaries between disciplines gy], I think it is." -ROBERT F. SERVKE 

In most cases that feedback leads to pre- 
dictable results: If food is present and com- N E W S  
petition is absent, the virus proliferates. But 
by modeling the entire network of interac- 
tions on the comDuter. the LBNL researchers 

Life After Chaos 
A ,  

found that the feedback control is inherently 
"noisy," so not all the viruses make the same After years of hunting for chaos in the wild, ecologists have come up most- 
decision under identical conditions-an ly empty-handed. But the same equations that failed to find chaos are 
adaptation that ensures some viruses will turning up stunning insights into how environmental forces and internal 
survive should the other path prove fatal. dynamics make populations rise and fall 
Understanding how to control such genetic 
switches could ultimately lead to new ways 
to control infections, says Arkin. 

Still. even with these and other initial 
modeling efforts (see sidebars on pp. 80 and 
82), many researchers argue that biological 
models have a long way to go before prov- 
ing themselves. "[Models] haven't had a lot 
of respect among biologists," says Marc 
Kirschner, a cell biologist at Harvard Medi- 
cal School in Boston. "They don't have 
enough of the biological character built in," 
and thus often don't reflect the true com- 
plexities of real biological systems. Arkin, 
Lauffenburger, and others say, however, that 
the new research in this area will improve 

2 the sophistication of the models by identify- - 
ing common circuit motifs used in biologi- 

5 cal networks and incorporating more com- 
3 plex and realistic feedback mechanisms. 
5 Over time, the models will also benefit from 
2 better inputs, such as the amount of each 
P protein present in real cells and their reac- 
? tion and diffusion rates. 

The complexity of nature may be a beautiful 
thing, but it came pretty close to crushing 
Maria Milicich's spirit. On a typical morning 
10 years ago she would take her motorboat 
out to the Great Barrier Reef, where she was 
studying the ecology of damselfishes. These 
brightly colored aquarium fish lay their eggs 
in nests at the reef's bottom. Each month the 
full moon triggers the larvae to hatch and 
emerge; they leave the reef and 19 days later 
return as mature larvae. Milicich wanted to 
figure out what determined how many larvae 
reached maturity, so she set up 2-meter-tall 
traps floating from buoys, each rigged with a 
light to attract the fish. 

You might expect that Milicich would 
have found a regular pulse of new adults ev- 
ery month. Instead she logged a wild gyra- 
tion. When she checked her traps during 
some pulses, she found only a few fish, but 
during other months she would find thou- 
sands. On one visit to the reef she discovered 
that the trap had been dragged to the sea 

floor by a load of 28,000 fish. 
Milicich searched for a cause for the fluc- 

tuations, seeking a link between the number 
of new adults and measurements she had 
made at the reef-verything from rainfall to 
the brightness of the moon. She tried hun- 
dreds of variables but came up empty- 
handed. Of course, many marine biologists 
had failed before her and simply labeled the 
supply of mature larvae as nothing more 
than random. That wasn't much consolation 
to Milicich. "To say that I felt depressed is an 
understatement," says Milicich, who now 
works as an ecological consultant to the 
Hong Kong government and private compa- 
nies. "Something was clearly wrong." 

Then Milicich had an epiphany. In 1990, 
she stumbled onto a paper in Nature that had 
invoked a strange kind of math to describe 
the abundance of phytoplankton off the 
coast of California. To decode her dam- 
selfish, Milicich had been trying to use lin- 
ear equations-which produce results that 
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are proportional to the values that go into 
them. But the paper's author, ecologist 
George Sugihara of Scripps Institution of 
Oceanography in La Jolla, California, had 
exploited nonlinear equations. What comes 
out of a nonlinear equation isn't proportion- 
al to what goes in; unlike linear equations, 
they may contain feedbacks and thresholds 
and other features that can yield complicat- 
ed results. Sugihara's data looked as in- 
tractable as hers, yet they surrendered to his 
analysis. "When I read the paper, I thought, 
'Bingethis is what my data is, and this is 
what it needs,' " says Milicich. 

Last month Milicich published a report in 
Science (5 March, p. 1528) with Sugihara 
and his graduate student Paul Dixon in 
which they cracked the damselfish cycle. 
Modeling it with nonlinear equations, they 
could account for the maddening dynamics 
with three factors: the moon's phase, turbu- 
lence around the reef, and winds blowing 
over the water. "From hundreds and hun- 
dreds of potential correlates, all of a sudden 
three dropped out, and they made perfect 
ecological sense," says Milicich. "An awe- 
some feeling for an ecologist, I have to say." 

Ecologists first began applying nonlinear 
dynamics to understanding the ups and 
downs of populations almost 30 years ago, 
and the field has gone through some drastic 
changes in recent years. When researchers 
began building nonlinear models of the ways 
that organisms might interact, they stumbled 
across what people in other fields were al- 
ready calling chaos-+ random-looking pat- 
tern produced by simple, nonrandom equa- 
tions. Models were so rife with chaos that 
ecologists began searching for it in the real 
world, because it promised to overhun the 
old ideas ecologists had about the balance of 
nature. But it's a sign of the times that 
nowhere in the damselfish paper does h e  
word "chaos" appear. Although chaos has 
become well established in other sciences 
such as physics, in ecology it remains elu- 
sive. "It's this great idea that really hasn't 
panned out all that well," says Dixon. 

Yet chaos isn't the be-all and end-all of 
nonlinear dynamics, but only one type of pat- 
tern it produces. The same nonlinear equa- 
tions that have failed to prove chaos in ecosys- 
tems are now helping researchers uncover 
how the fiendishly complex interactions of or- 
ganisms with their own kind, with other 
species, and with weather send populations on 
erratic trajectories. "This is an area whose 
time has come:' says ecologist Stuart Pimm of 
the University of Tennessee, Knoxville. 

The rise and fall of chaos 
The jagged oscillations in populations are 
nothing new to ecologists, but before the 
1970s, they put most of the patterns down to 
the unaccountable effects of weather, disease 

outbreaks, and other sources of so-called en- 
vironmental noise. If not for noise, they as- 
sumed, a population should naturally hover 
at an equilibrium. That assumption was 
shaken by the work of Sir Robert May in the 
1970s. May was originally trained as a physi- 
cist, but while at the Institute for Advanced 
Study in Princeton, New Jersey, he was 
drawn to the thorny complexities that ecolo- 
gists and biologists have to cope with. He 
started to explore simple ecological models, 
tracking how populations changed genera- 
tion after generation. In a typical model, a 
population would swell toward an equilibri- 
um level at a set rate; above that level, the 
population would decline. 

May's model was simple, but the popula- 
tion of a preceding generation wasn't direct- 
ly proportional to the current one. It might be 
more, it might be less, it might be the same. 
In other words. it was nonlinear. And Mav 

chaotic system just a hair, you will drastical- 
ly alter its future path. The rate of this diver- 
gence is called the Lyapunov exponent. A 
negative exponent means limit cycles and 
other at least somewhat regular behavior. A 
positive exponent means chaos. 

May's work was "hugely influential," says 
Pimm, "because it showed if you take the sim- 
plest population model you can imagine that 
you'll get cycles and this special thing called 
chaos. What that told us immediately was that 
lurking in these descriptions that looked sim- 
ple you've got very strange dynamics." Sim- 
ple intrinsic factors such as growth rates 
might alone be enough to produce a lot of na- 
ture's complicated signal. It was so easy to 
find chaos in models, in fact, that it seemed 
likely that strong cases of chaos could be 
found in nature. 

The excitement that many ecologists felt 
over the ~ossibilitv had two sides. There was 

Here and gone. Wind, waves, and the phase of the moon inter- chaos in the defini- 
act to produce drastic swings in damselfish populations. t~on, it would look like a ran- 

dom pattern produced by the 
discovered that a nonlinear model of ecology pushing and shoving of environmental noise. 
could produce complex patterns even if it 
was far simpler than anything in nature. 
When May ran his model at low growth 
rates, the population would hit equilibrium 
and stay there. But when May had the popu- 
lation reproducing like bunnies, it overshot 
its carrying capacity, triggering a population 
crash, followed by another rise. Rise and fall 
would then follow regularly, in a pattern 
known as a limit cycle. At even higher 
growth rates, the population tripped into a 

Ecologists struggled to find ways to filter out 
the noise in their data to get at the underlying 
dynamics, but they were not the ones to get 
the f i t  strong signal of ecological chaos. In- 
stead it came from the laboratory, where sci- 
entists can keep noise at a minimum. In 1997, 
biologist Robert Costantino of the University 
of Rhode Island, Kingston, and his colleagues 
reported bona fide chaos in captive flour bee- 
tles (Science, 17 January 1997, p. 389). 

Costantino's lab has been raising the bee- 
more complicated cycle. Instead of moving tles in flasks of Blue Bonnet flour and brew- 
between one high and one low, it might hop er's yeast for over 20 years. After they hatch, 
between two of each, or four, or more. Final- 
ly, when the growth rate soared above a 
threshold, the population went berserk. From 
generation to generation, it hopped around in 
what looked like a purely random fashion. 

Chaos was the name bestowed on this 
sort of random-looking pattern produced by 
a nonrandom equation. As other scientists 
were seduced by the erratic charms of chaos, 

the beetle larvae need about 2 weeks to 
grow into pupae, and another 2 weeks to 
reach reproductive age. Flour beetle dynam- 9 
ics are drastically nonlinear, because the $ 
beetles are cannibals, the adults eating eggs 2 
and pupae (and the larvae eating eggs as 3 
well). Cannibalism undermines the younger $ 
generation of beetles and can trigger a pop- $ 
ulation crash. But it eventually leaves fewer 2 - 

they invented a more formal way to recog- adults around, which in turn means less can- g 
nize it: By nudging the initial conditions of a nibalism. A new batch of larvae can then 5 
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C O M P L E X  S Y S T E M S  s 
reach adulthood in such high numbers that 
the population rebounds. 

The researchers built a mathematical 
model of flour beetle population dynamics 
and tinkered with it, changing variables such 
as the adult mortality and the number of lar- 
vae each adult produced, and watched what 
kind of dynamics played out. They discov- 
ered that if adult mortality was high, the mod- 
el became very sensitive to the rate of canni- 
balism, in some cases jumping to cycles and 
in others to chaos as they changed the rate. 
The researchers next turned to the actual bee- 
tles to see if they could create this behavior. 
They raised the adult mortality rate simply by 
regularly plucking out mature beetles. Then 
they mimicked different cannibalism rates by 
removing pupae from the flasks. At some 
rates the flasks reached an equilibrium; at 
others they fluctuated through cycles; at oth- 
ers they raged chaotically. Those were exact- 
ly the dynamics that Costantino's group had 
predicted from their model. 

Outside the comfortable confines of the 
lab, though, things haven't gone so well. To 
find chaos in the wild, ecologists usually re- 
sort to historical records consisting of a few 
dozen data points. "Most of the data sets are 
really very bad; they're just awful," says 
Costantino, "and I don't mean to discredit 
any of the researchers who did the work." To 
try to make sense of them, researchers some- 
times build a model out of the biology they 
consider important to the case they're study- 
ing-such as the rate at which a predator eats 
its urev. Thev can then turn 

ambiguous, weak cases of chaos turned up. 
To some ecologists, the way nature seems 

to sit on the edge of chaos, and not plunge 
deep into it as models might predict, is a fas- 
cinating puzzle. "I haven't seen any theory I 
believe that would predict this,'' says Turchin. 
It may be that a population's tendency toward 
chaos is buffered in some way that the models 
have missed. To study food webs, for exam- 
ple, ecologists often simplify them into linear 
chains. All the primary producers get thrown 
into one level; next up the chain are the herbi- 
vores, then the intermediate predators, and so 
on up to the top predators. These models can 
turn chaotic because oscillations in popula- 
tion density at one level generate oscillations 
at other levels. But some researchers argue 
that these chains ignore some important 
messiness in nature. A predator may depend 
strongly on a single species of prey, but it may 
sometimes switch to other species. Killer 
whales, for example, can switch from sea li- 
ons to sea otters (Science, 16 October 1998, 
pp. 390,473). Or they may be omnivores like 
people or bears, picking their meals from 
many levels. Some predators may even snack 
on other species at the same rank in the food 
chain, or on their own species. 

Last August a group of ecologists at 
the University of California (UC), Davis, 
showed how these additional connections 
could tame the tendency toward chaos. Ecol- 
ogist Kevin McCann and his colleagues 
looked at the dynamics of a predator in a 
simple food chain. Next they compared this 

stereo knobs s o  that the equa- 
tions produce a pattern like 
the real one. Other times thev 
fit the data to an equatiok 
without bothering to figure 
out its biological meaning 
first. Then, by perturbing the 
model, they can find its Lya- C 
punov exponent and deter- 
mine whether the wild popu- 
lation is chaotic or not. For 
over 20 years ecologists have 
been using methods like these 
to hunt for chaos. And the re- 
sult? "There is no unequivo- 
cal evidence for the existence At the mercy of weather. Harsh gales on islands off Scotland 
of chaotic dynamics in can synchronize fluctuating populations of feral sheep. 
natural population," declares 
ecologist David Earn of Oxford University. model to more complicated chains in which 

In 1995, for example, theoretical ecolo- the predator switched between two prey 
gists Stephen Ellner of North Carolina State species, or the prey had to compete with an- 
University in Raleigh and Peter Turchin of other species for its own food. They spent a 
the University of Connecticut, Storrs, sur- lot of effort giving these more complicated 

E veyed all the long-term observations of wild models a realism that many earlier models 
populations they could find in the scientific lacked. For example, the efficiency with 

$ literature and measured their Lyapunov expo- which their predators could catch prey was 
nents. They concluded that some were stable, based on actual animal metabolism. A preda- 
many were verging on chaos, and only a few tor could only boost its success at hunting 

one prey species at the expense of its ability 
to hunt others. 

Predator populations that depended solely 
on one prey species slipped into chaos. But if 
the ecologists added in other connections be- - 
tween s p e c i e ~ v e n  if they were weak-the 
chaos disappeared. Changes in the population 
of one species no longer hit a linked species 
with full force. "It seems that for species to 
persist, nature is biased toward inhibitors and 
away from oscillators," says McCann. "That's 
just going to decrease the likelihood of chaos, 
no matter what." 

Other ecologists don't take such a dim 
view of chaos. They still think it's out there in 
nature but playing hard to get. 'There aren't a 
large number of examples that you can cata- 
log, because there aren't a large number of 
systems out there for which we have long 
runs of data for all the variables," says May, 
who is now the Chief Scientific Advisor to 
the U.K. government. But if finding chaos 
means tracking a species for decades or 
centuries-as well as all its predators and 
pathogens and prey and the rainfall and so 
on-few ecologists may have the stamina (or 
the funding) to keep up the hunt. 

The powers of prediction 
Whatever the final verdict on chaos in nature 
may turn out to be, the success of nonlinear 
dynamics won't stand or fall on it. "In the 
last few years we've been using the nonlinear 
techniques, but not focused on 'chaos versus 
nonchaos,' " explains Turchin. "We are now 
more interested in what are the forces that 
drive the spectacular population dynamics" 
seen in many species. Ecologists probing 
these forces were once limited to cumber- 
some experiments, such as closing off parts 
of a forest to predators. With the help of non- 
linear mathematics, they can now get addi- 
tional information from historical records. 

Turchin, for example, is studying a pest 
known as the larch bud moth, which denudes 
larch trees in the Swiss Alps. The bud moth 
goes through cycles of 8 or 9 years in which 
its numbers can multiply 100,000-fold. Ecol- 
ogists have been debating the cause of the 
cycles for as long as they've known about 
them. At one point a bud moth virus seemed 
to be the best candidate, but more recently 
the larches have taken the lead. An exploding 
moth population destroys larch need14 
faster than the trees can recover: the follow- 
ing year the trees muster only stubby needles 
that are a poor energy source for the moths. 

Turchin and colleagues, working at the 
National Center for Ecological Analysis and 
Synthesis at UC Santa Barbara, have sifted 
through a 40-year bud moth census, as well 
as related ecological records. They then 
wrote out nonlinear equations representing 
the possible effects of each ecological 
factor-viruses, food quality, and so on>n 
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the bud moth and tested them to see how 
closely they fit the bud moth's actual history. 
Their preliminary findings suggest that the 
plants have something do with the cycle, but 
they're not powerfid enough on their own to 
produce it. The collapse of the needle supply 
does bring the explosion of bud moths to a 
stop. But a parasitoid wasp that lays its eggs 
in the caterpillar then seems to take aver. The 
rise of the wasp lags behind the moths, and it 
continues after the moths have stopped their 
ascent. As a higher and higher proportion are 
parasitized and killed, the moth population 
crashes. When the moths bottom out, a win- 
dow opens for the larches to recover. The 
bud moth crash spurs a wasp crash, then the 
cycle starts all over again. 

The same kind of interaction from above 
the 1950s. Researchers have 
suspected that weather might 
synchronize separate popu- 
lations, in the same way ad- 
justing a slow clock every 
hour keeps it in synch with 
a faster one. But the sheep 
populations are so sensitive 
to random noise that weath- 
er ought to have the oppo- 
site effect, throwing them 
out of sync. 

Grenfell and his col- 
leagues resolved this para- 
dox by incorporating weath- 
er into their nonlinear mod- 
els, adding variables to their 

- C O M P L E X  S Y S T E M S  - 

is sunny. Now researchers are getting a bet- 
ter understanding of population dynamics by 
bringing noise into nonlinear models. 

Bryan Grenfell of Cambridge University 
and his colleagues have been studying feral 
sheep on islands off Scotland using methods 
similar to Stenseth's. They found that at low 
populations, the sheep multiply in a straight- 
forward, linear fashion. But above a certain 
threshold, as the sheep overgraze their island, 
they suddenly fluctuate in a nonlinear fash- 
ion. Randomly adding or subtracting a few 
sheep to a crowded island brings big changes 
to the dynamics of the population. 

Their records also show that the popula- 
tion of sheep on neighboring islands has 
been rising and falling in tight synchrony 
since ecologists first started their census in 

Bud moth boom and bust. The supply of the 
caterpillar's food, larch needles, and the depre- 
dations of a parasitic wasp interact to produce 
its population cycles. 

and below in a food chain emerged when I 
Nils Stenseth, an ecologist at the University 
of Oslo, looked at the snowshoe hare of b 
~anada.. Stenseth used a different method: I 
Rather than make biologically plausible 
equations from the data, he let the actual 
data guide him through a statistical search C 
for the best nonlinear equations. After he had 
a robust model, he looked at the variables. 
The animals, he discovered, were controlled 
by two factors; changes in food supply and 
populations of predators (ma* lynx) fit the 
job descriptions best. "People tend to belong 
to different schools--either it's the food sup- 
ply or predation," says Stewth. "But you re- 
ally have to have both." 

You also have to have noise in the envi- 
ronment, ecologists are learning. Most eco- 
logical models (including nonlinear ones) 
have only looked at a particular species, or 
perhaps its food supply and predators. They 
haven't taken into consideration the effects 
of random variability coming into the model 
from the outside. In these models, every day 

equations that described the harshness of the 
March gales that scour the islands, as well as 
the respite of calm Apnls. Their analysis 
showed that the weather is so intense that it 
can overcome the sensitivity of the sheep's dy- 
namics. Not only does it bring down the 
sheep's numbers on neighboring islands at the 
same rate, but both populations subsequently 
cross the crucial threshold in the same year. 

A powerful interaction between animals 
and their emironment is responsible for the 
darnselfish cycle as well, according to 
Dixon and his colleagues. Three days after 
hatching, the larvae have depleted their 
yolk sac and must start feeding in the out- 
side world. Unable to swim far, they depend 

on turbulence to sweep them into contact 
with zooplankton. Too little turbulence 
won't give them enough food to survive; 
too much won't g ~ e  them enough time to 
get it in their mouths. The 111 moon that 
triggers the larvae to hatch also brings with 
it high tides, which sweep the larvae away 
from the reef, letting them avoid predators 
die they mature. They return as mature 
larvae, but to get back, they need favorable 
winds to set up the right currents. Because 
their survival depends on several interacting 
factors, the fish can react dmmatically to what 
looks like small amounts of noise. 

If the turbulence and wind both jibe 
with the fish's needs at the right time rela- 
tive to the full moon. thev can reach adult- , d 

hood in vast numbers. But if the factors go 
against the fish, their individual effects are 
multiplied. Say 90% of the fish get killed 
because of turbulence. If the returning 
winds also create a 90% mortality rate in 
the survivors, only 1% of the fish will 
reach adulthood. "If you play around with 
these losses, that alone can produce huge 
fluctuations," says Dixon. 

Damselfish and feral sheep are only two 
examples of a growing list of organisms in 
which nonlinear dynamics seems to amplify 
noise. "The emergence of noise amplifica- 
tion as a very general factor is very excit- 
ing," says Ellner of North Carolina State. 
"Apparently there is some generality after 
all, even if it isn't the one that we looked for 
initially-that is, deterministic chaos." 

Although nonlinear models are flexing 
their muscles at explaining the ebbs and 
flows of wild populations, experts say it is 
far too soon to apply them to conservation 
biology4esigning reserves, for example, 
or understanding when a population drop is 
a natural fluctuation and when it's a sign of 
trouble. But the models are showing promise 
for helping scientists destroy unwanted or- 
ganisms. Grenfell, for example, applies the _ - 
same approach he brings to island sheep to 2 
diseases like measles. His work suggests that 2 
vaccination campaigns might work better if 2 
the constant low-level efforts now mainly $ 
practiced were punctuated by massive spurts. $ 
That would tend to synchronize disease lev- % 
els in all regions of a country in the same - 
way that March gales synchronize sheep, so g 
that the crests and troughs of its cycle would 
be the same everywhere. If every town hits a 3 
low part of the cycle together, neighboring 8 
towns won't reinfect each other, and chances 5 
are better that the disease won't resurge. 

- 

For now, though, ecologists are just en- ? 

joying the fact that their models are working. E 
"No one ever thought that the models were 5 
that good," admits Alan Hastings of UC 
Davis. "That to me is the biggest sign of & 
progress." -CARL ZlMMER 
Carl Zimmer is the author of At the Water's Edge. g 
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