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TGF-PI to chick embryonic fibroblasts fol- 

Requirement of Type 111 TGF-P ilarly lowed sized by immunoprecipitation labeled protein (Fig. yielded IB, lane a sim- 4). 

Receptor for Endocardia1 Cell The minor bands that coimmunoprecipitated 
with TBRIII comigrated with cross-linked 

Transformation in the Heart 
TBRII and TBRI (11, 12). TBRIII antisera 
did not cross-react with overexpressed TBRII 
or TBRI protein in protein immunoblot or 

Christopher B. Brown,' Angelique S. Boyer,' immunoprecipitation assays (12). Thus, the 
Raymond 8. Runyan,' Joey V. Barnett3* antisera specifically recognized both the 

overexpressed and native chick TBRIII. 
Transforming growth factor+ (TCF-P) signaling is mediated by a complex of To determine whether TBRIII antisera in- 
type I (TBRI) and type II (TBRII) receptors. The type I l l  receptor (TBRIII) lacks terfered with ligand binding, we incubated 
a recognizable signaling domain and has no clearly defined role in TCF-P chick embryonic fibroblasts with various 
signaling. Cardiac endothelial cells that undergo epithelial-mesenchymal trans- 
formation express TBRIII, and here TBRIII-specific antisera were found t o  inhibit 
mesenchyme formation and migration in atrioventricular cushion explants. 
Misexpression of TBRlll in nontransforming ventricular endothelial cells con- 
ferred transformation in response t o  TCF-P2. These results support a model 
where TBRlll localizes transformation in the heart and plays an essential, 
nonredundant role in TCF-P signaling. 

concentrations of antisera before the addition 
of human '251-TGF-PI and cross-linking 
analysis (Fig. 1C) (10). Incubation with pre- 
immune antisera had no effect on ligand 
binding (lo), whereas immune antisera dem- 
onstrated a concentration-dependent decrease 
in ligand binding with a median effective 
concentration (EC,,) of 10 pglml (Fig. 1C). 

Transforming growth factor-@ controls cell all endothelial cells in the heart and therefore 
growth and differentiation and regulates pro- cannot localize TGF-P responsiveness (9). 
cesses as diverse as development, wound heal- To investigate the role of TBRIII in AV 

Thus, these antisera were used as a tool to 
further examine receptor function. 

Immunohistochemical localization of 
ing, atherosclerosis, and tumor progression (I). 
TGF-P signaling is mediated by TBRI and 
TBRII, both of which contain a serine-threo- 
nine kinase domain (2). Binding of ligand to 
TBRII stimulates phosphorylation of TBRI by 
TBRII and the subsequent activation of mem- 
bers of the Smad family of transcription factors 
(3). TBRIII facilitates the binding of TGF-P2 to 
the TBRI-TBRII signaling complex (4), but 

cushion transformation, we generated several 
polyclonal antisera to the extracellular do- 
main of TBRIII (1 0). Antisera specificity was 
determined by protein immunoblot analysis 
and by assays in which TGF-P ligand was 
cross-linked to overexpressed and native 
TBRIII proteins followed by immunoprecipi- 
tation. Protein immunoblot analysis (10) of 
chick TBRIII overexpressed in COS cells 

TBRIII in the developing cardiovascular sys- 
tem revealed expression by a subpopulation 
of endothelial cells. In contrast to the readily 
detectable expression of TBRIII in endothe- 
lial and stromal cells of the extraembryonic 
vasculature (13), no intraembryonic endothe- 
lial cells outside the heart expressed TBRIII 
from stage 10 through stage 19. TBRII is 
expressed by endothelial cells in the extraem- 

TBRIII lacks a recognizable signaling domain revealed a high molecular weight band of bryonic vasculature (13), intersomitic ves- 
(5) and has not previously been shown to be heterogenously glycosylated protein and a sels, and neural plexus (Fig. 2, A and C), 
necessary for TGF-P signaling. 100-kD band of unglycosylated protein core whereas TBRIII is not detected in the latter 

Here we used explanted chick atrioven- (Fig. 1 A, lane 2) that increased after degly- two sites (Fig. 2, B and D). However, TBRIII 
tricular (AV) cushions (6) as an in vitro 
model of epithelial-mesenchymal transforma- 
tion to identify the role of TBRIII in TGF-P 
signal transduction during cardiac develop- 
ment. In the developing heart, endothelial 
cells that line the lumen in the regions of the 
AV cushion and outflow tract undergo epi- 
thelial-mesenchymal transformation and par- 
ticipate in the formation of the valves and 
membraneous septa (7). TGF-P stimulates 
AV cushion endothelial cells (a), but not 
ventricular endothelial cells, to transform in 
vitro. Restricted expression of TGF-P recep- 
tors in the endothelium of the heart is one 
conceivable mechanism to localize TGF-P re- 
sponsiveness. However, TBRII is expressed by 

cosylation of the homogenate (Fig. lA, lane 
3). Similarly, only immune antisera precipi- 
tated a labeled protein from COS cell homog- 
enates prepared from cells transfected with 
TBRIII cDNA and incubated with IZ5I-la- 
beled TGF-P 1 followed by cross-linking 
(Fig. lB, lane 2) (10). Cross-linking of IZ5I- 

is detected on the endocardial cells overlying 
the AV cushion (Fig. 2F) and on at least a 
subset of migrating mesenchymal cells. This 
pattern of expression is consistent with a role 
for TBRIII in localizing and mediating the 
effects of TGF-P on epithelial-mesenchyrnal 
transformation in the AV cushion in vivo. 

Fig. 1. Antisera to the A 
TBRlll extracellular do- 
main inhibit ligand z: 
binding. (A) Protein im- 
munoblot analysis with 
antiserum K to COS 
cell homogenates after 
transfection with vec- 
tor alone (lane 1) or Pz$ 
TBRlll without (lane 2) 
or with (lane 3) degly- 
cosylation (degly). (B) 
lmmunoprecipitations 
with preimmune (PI) or 
immune (I) K of COS 

COS CEF 
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cells transfected with 
TBRlll (lanes 1 and 2) or chick embryonic fibroblasts (CEF) (lanes 3 and 4) after they were cross-linked 
with 1251-TCF-pl. Relative molecular weights in kilodaltons are indicated to the right of each panel (C) 
Effect of incubation with immune antisera on ligand binding in chick embryonic fibroblasts. The bar 
graph shows the concentration-dependent blockade of lZSI-TCF-~l binding to TBRlll in chick embryonic 
fibroblast. by TBRlll antisera (70). The experiment depicted along the x axis was repeated three times, 
and the mean decrease in binding is depicted (*P < 0.05). 
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To determine the functional role of 
TBRIII in AV cushion transformation, we 
tested the TBRIII antisera for their effects on 
mesenchyme formation as a measure of AV 
cushion transformation in vitro (6). AV cush- 
ion explants were obtained from stage 14, 16, 
and 18 chick embryos and incubated on 
three-dimensional, hydrated collagen gels 
with the addition of either preirnmune or 
immune antisera (10 p,g/ml) (14). In explants 
incubated with preimmune antisera, the en- 
docardial cells formed a monolayer and, un- 
der the influence of the inductive AV cushion 
myocardium, underwent a specific activation, 
invasion of the matrix, and subsequent migra- 
tion that together constitute epithelial-mesen- 
chymal transformation. The activation step 
was characterized by a change from closely 
packed polygonal cells to a loose association 
of elongated cells (Fig. 3A). 

In contrast, explants incubated with 
TBRIII antisera demonstrated fewer mes- 
enchymal cells within the collagen matrix 
and an abundance of densely packed, po- 
lygonal or cobblestone-shaped endocardia1 
cells on the matrix surface (Fig. 3B). Data 
from multiple explants demonstrate a great- 
er than 70% decrease in mesenchyme for- 
mation at each stage examined (Fig. 3C). 
Further studies with stage 18 explants in- 
vestigated whether blockade of TBRIII had 
an effect on the migration rate of mesen- 
chymal cells. Analysis of the migration rate 
of mesenchymal cells in the collagen ma- 
trix indicated a 50% decrease in migration 
rate (Fig. 3D). These data indicate that 
TBRIII is necessary for mesenchyme for- 
mation and mesenchymal cell migration. 

To determine whether the misexpression 
of TBRIII was sufficient to confer TGF-P- 
mediated transformation on non-AV cushion 
endothelial cells, a retroviral vector encoding 
either TBRIII (rTBRIII) or alkaline phospha- 
tase (rAP) was used to infect ventricular ex- 
plants in vitro. Ventricular endothelial cells 
express TBRII (9) and TBRI, but do not 
express TBRIII (13) or transform in response 
to TGF-P1, TGF-P2, or AV cushion myocar- 
dium (6). Retrovirally infected cells were 
identified and scored as having an endothe- 
lial or mesenchymal morphology. Analysis 
of infected explants after the addition of 
vehicle or TGF-P2 demonstrated that 40% 
of the total cells infected with rAP were 
mesenchymal (Fig. 4) and most likely rep- 
resented AV cushion endothelial cells 
present in the explant that had been infect- 
ed with virus. In control experiments, the 
addition of TGF-PI or TGF-P2 to unin- 
fected ventricular explants did not increase 
mesenchyme formation (15). Similarly, ex- 
plants infected with rTBRIII did not dem- 
onstrate an increase in infected cells that were 
mesenchymal when compared with rAP (Fig. 
4). However, explants infected with rTBRIII 

and incubated with TGF-P2 demonstrated a 
dramatic increase in the percentage of infect- 
ed cells that were mesenchymal (Fig. 4). 
TGF-P2 was added because ventricular myo- 
cardium alone does not support transfonna- 
tion (6). Thus the expression of TBRIII in 
normally unresponsive endothelial cells results 
in mesenchyme formation in response to TGF- 
P2 and supports an essential role for TBRIII in 

Fig. 2. lmmunolocalization of TBRlll 
in the developing cardiovascular 
system. Expression of TBRll or TBRlll 
by endothelial cells (arrows) of the 
intersomitic vessels (A and B) and 
neural plexus (C and D), respective- 
ly. Endothelial cells lack TBRlll ex- 
pression. (E and F) Adjacent sections 
of the AV cushion region of a stage 
18 embryo incubated with preim- 
mune or immune antiserum K. TBRlll 
is expressed by endothelial cells 
overlying the AV cushion (demar- 
cated by black arrows), migrating 
mesenchymal cells (small black ar- 
rows), and endocardial cells of the 
outflow tract (white arrow). Extra- 
cellular matrix is indicated by aster- 
isks. For immunostaining of the sec- 
tions, embryos were fixed in Bouin's 
solution or 4% paraformaldehyde. 
embedded in paraffin, and cut in 
5-~m-thick sections (7 7). Primary 
antibody concentration was a 1:100 
dilution. Protein was visualized with 
a 1:1000 dilution of alkaline phos- 
phatase-coupled anti-rabbit immu- 
noglobulin G (Sigma) and Fast Red 
Naphthol color substrate (Sigma). 
Sections were photographed with 
brightfield optics on a Zeiss Axio- 
phot microscope. Bars depict 25 km. 

mediating AV cushion transformation. 
Because both TBRIII and TBRII (9) are 

coloca l i i  in AV cushion endothelial cells, 
and each is required for transformation, we 
propose that a complex of at least TBRIU and 
TBRII mediates transformation and that the 
restricted expression of TBRIII localizes this 
response. TBRIII has been reported to present 
ligand to the TBRI-TBRII signaling complex 

determined. In all panels irrows in- i , - I 
dicate representative mesenchymal 
cells. Bars in (A) and (8) depict 15 
p,m. (C) Quantification of mesen- 
chymal cells in K-incubated explants 
expressed as a percent of the num- 
ber of mesenchymal cells in Pl-incu- 
bated explants. Error bars represent 
mean 2 SEM, and all comparisons 
were significant when compared &r&&m&w&& I 
with PI (P < 0.05). The number of I 
explants in each group and the 
mean number of mesenchymal cells in I-incubated (antiserum K) explants, expressed as a percent 
of the mean number of mesenchymal cells in PI-incubated explants, were as follows: (stage 14; PI, 
n = 9; 1, n = 8; I%), (stage 16; PI, n = 17; 1, n = 19; 19%), and (stage 18; PI, n = 16; 1, n = 14; 
19%). (D) Average lateral migration rate of mesenchymal cells for stage 18 explants. Represen- 
tative experiment is of the lateral migration rates within a field of 10 (1) or 11 (PI) cells. Error bars 
represent mean r SEM and were significant when compared with PI controls (P < 0.05). 
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(4)  and is essential for the high-affinity binding 
of TGF-P2 (16) by the TBRI-TBRII signaling 
complex. If TBRIII solely functions to present 
TGF-P2 to the signaling complex, it is unclear 
why the addition of TGF-PI, which will direct- 
ly activate the TBRI-TBRII signaling complex 
(2). does not result in transformation of ventric- 
ular endothelial cells. This suggests a distinct 
role for TBRIII signaling in endothelial cell 
transformation. 

TBRIII may signal in response to the li- 
gand TGF-P2. In support of this idea, TGF- 
P2 has a restricted pattern of expression in 
the AV cushion and outflow tract of both the 
chick and mouse heart during AV cushion 
morphogenesis ( 1  7), and homozygous tgf-P2 
null mice (18) display a phenotype that in- 
cludes cardiac defects that does not overlap 
with the phenotype of either tgf-PI or tgf-P3 
null mice (19).  We propose that t'he binding 
of TGF-P2 to TBRIII alters the composition 
or activity of the TBRI-TBRII signaling com- 
plex to activate a unique set of downstream 

NF-ATc, AV cushion transformation occurs 
with subsequent defects in the outflow tract 
valves and the ventricular septum (21).  
Whether alterations in TBRIII underlie spe- 
cific cardiac defects is unknown, but defects 
in human AV cushion morphogenesis have 
recently been linked to a region of chromo- 
some 1 near the gene encoding TBRIII (22) .  
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