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The composition of a planetary surface is an 
important indicator of its evolution and sub­
sequent chemical alteration. Europa's surface 
composition can be modified by extrusion of 
material from the interior (1), the infall of 
cometary and meteoritic material, photo­
chemical processes, and by the deposition of 
material from the magnetosphere (2, 3). Eu-
ropa is subjected to intense bombardment by 
jovian magnetospheric particles—energetic 
electrons, protons, sulfur ions, and oxygen 
ions (4)—that could alter the composition 
through radiolysis (5, 6). The relative impor­
tance of these chemical alteration processes 
has not been established for Europa. 

Spectra of Europa indicate a water-ice sur­
face (7) with sulfur dioxide (S02) (2, 8) and 
hydrated minerals (9). The S02 could be pro­
duced by sulfate decomposition (10) or from 
implanted sulfur ions (2). The hydrated miner-
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passed through a column packed with alumina, silica 
gel, and Celite to remove the catalyst, and finally 
precipitated into a large excess of methanol. The 
polymer was collected and dried in vacuo to give 
15.8 g of PE as viscous oil. 

14. P. J. Flory, Principles of Polymer Chemistry (Cornell 
Univ. Press, Ithaca, NY, 1953). 

15. D. A. Tomalia, A. M. Naylor, W. A. Goddard III, 
Angew. Chem. 102, 119 (1990). 

16. Z. Xu et a/., Macromolecules 18, 2560 (1985). 
17. W. Burchard, Adv. Polym. Sci. 48, 1 (1983). 
18. B. J. Bauer, L J. Fetters, W. W. Graessely, N. Hadji-

christidis, G. F. Quack, Macromolecules 22, 2337 
(1989). 

als may be evaporite salts (9), from brine ex­
truded from a hypothetical subsurface ocean 
(11). Infrared (IR) spectra of Europa obtained 
by Galileo's near-infrared mapping spectrome­
ter (NIMS) (12) showed absorption features 
(13) at wavelengths of 4.25,4.03, and 3.50 |xm. 
Carbon dioxide and S02 were identified (13) as 
the 4.25- and 4.03-|xm absorbers, similar to 
previous findings for Ganymede and Callisto 
(14). We show here that the 3.50-|xm feature, 
corroborated with laboratory measurements 
and Galileo ultraviolet spectrometer (UVS) 
(15) data, indicates the presence of hydrogen 
peroxide (H202), formed in this environment 
by energetic plasma irradiation of Europa's 
surface (6). 

NIMS reflectance spectra (Fig. 1A) of Eu­
ropa's leading anti-jovian quadrant (16) show 
characteristic features of water frost and a fea­
ture at 3.50 |xm that is not due to H20. Hydro­
carbons and ammonium-containing minerals 
were suggested to account for this feature (13), 
but such identifications are problematic because 
their absorption wavelengths do not match that 
observed, and both classes of compounds ex­
hibit additional, stronger absorption features not 
evident in the NIMS spectra. For example, 
methanol (17) shows an absorption band at 3.53 
|xm and four other strong bands at 3.38, 3.35, 
3.14, and 3.04 |xm that are not apparent in 
Europa's spectrum (Fig. 1A). Similar argu­
ments rule out other simple hydrocarbons and 
ammonium-bearing minerals (18). A more like-
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ly candidate for the 3.50-|xm feature is H202, 
which produces 2v2, v2+v6, and 2v6 combina-
tion-bending-mode absorption (19, 20) at —3.5 
|xm and has been predicted to occur on icy 
satellite surfaces (6). 

For comparison to the NIMS data, we 
measured (21) the diffuse reflectance of 
H202 mixtures in water ice and found a band 
at 3.504 |xm (Fig. IB). Previous measure­
ments (22) of UV-photolyzed, 10 K water ice 
showed the H202 feature at 3.509 |xm, and it 
shifts to 3.505 |xm at 70 K. These wave­
lengths are consistent with the Europa feature 
(3.50 ± 0.015 |xm). The widths of the Europa 
and laboratory feature are also consistent, 
both being —0.06 |xm wide (full width at half 
maximum) (Fig. 1). With the exception of 
this feature, frozen aqueous H202 solutions 
produce near-IR spectra that are indistin­
guishable from those of pure water ice. 

An estimate of the surface concentration of 
H202 is obtained by laboratory IR-reflectance 
measurements of frozen H202-H20 solutions at 
various concentrations (21). Comparing the rel­
ative band depths of these spectra with the 
NIMS spectrum, we find a concentration on 
Europa of-0.13 ± 0.07% (by number of H202 

molecules, relative to H20; this convention is 
used throughout) (21). The estimate pertains to 
Europa's 3.5-|xm-wavelength, optically sensed 
surface layer, which is limited by water spectral 
absorption to depths of about the ice-grain size 
(23), ignoring porosity. The grain size (—60 
|xm) was determined with the observed IR re­
flectance factor (24) and radiative-transfer cal­
culations for ice-grain surfaces (25). 

Condensed H202 in Europa's surface may 
exist as a solid-state solution in ice or as 
crystals of pure H202 or H202-2H20 (20). 
However, the wavelength (3.52 |xm) of the 
crystalline phases (at 4 and 80 K) is larger 
than the wavelength of Europa's feature and 
outside the range allowed by the estimated 
wavelength uncertainty. Pure amorphous 
H202 is precluded because its absorption 
band occurs at 3.56 |xm (20). 

Hydrogen peroxide absorbs UV radiation 
(26), so if our identification is correct we expect 
(6) a corresponding absorption signature to be 
present in Galileo UVS spectra (27). Disk-re­
solved UVS measurements (obtained concur­
rently with the NIMS observations) were com-
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Spatially resolved infrared and ultraviolet wavelength spectra of Europa's lead­
ing, anti-jovian quadrant observed from the Galileo spacecraft show absorption 
features resulting from hydrogen peroxide. Comparisons with laboratory mea­
surements indicate surface hydrogen peroxide concentrations of about 0.13 
percent, by number, relative to water ice. The inferred abundance is consistent 
with radiolytic production of hydrogen peroxide by intense energetic particle 
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by radiolysis. 
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pared with the diffilse reflectance of a frozen 
0.169'0 solution of HZOZ 111 \vater (28). The spec- 
tra (Fig. 2) are coasistent. both showing the 
onset of absolptioll at about 300 nm and exhib- 
iting similar shapes at shorter n.avelengths. The 
s imila l i~  of these spectra supports the IR iden- 
tiiication of H,O, on Europa's surface. Hon;ev- 
er. nunlerous nlaterials exhibit broad-band UV 
absorpt~on spec&a, so the U \ T  nleasurelnents 
alone do not provide unique identification. 

- 
C 

- 

I l l 1 I l l I l  

2.5 3.0 3.5 4.0 
Wavelength (w in)  

Fig. 1. (A) Representative reflectance factor spec- 
t rum of Europa's leading, anti-jovian quadrant. 
The feature at 3.50 k m ,  identified as H202 ab- 
sorption, is shown in the inset as the ratio t o  the 
interpolated continuum (the reflectance factor if 
H202 were absent). All other structure is due t o  
water; the peak at 3.1 k m  is a H20  restrahlen 
reflection feature. This spectrum is an average of 
nine individual spectra, covering 105"W t o  
125"W, 22"s t o  ZON. The 3.50-km band is found 
from <lOOoW t o  >140°W. (0) Laboratory dif- 
fuse reflectance spectrum (in percent) of a 0.5% 
frozen solution of H202 in water. Combination- 
bending transitions of H202 appear at 3.504 k m .  
N o  water absorption band occurs at this wave- 
length, as shown in the pure water ice curve 
(rescaled). Sample temperatures were 80 K. 

The concentration used for the laboratoly 
measurements is about the sanle as the Europa 
value, but the gain size. wh~ch also affects the 
ieflect~v~q. was not determined for t h ~ s  labora- 
tory sample. so \ ~ e  cannot ~ndepeildently de- 
duce H,02 conceiltrat~ons fiom these LTT data 
Instead. u e  used the IR-der~ved gain slze and 
H202 UV absolpt~on cross sectlons (26. 29) to 
compute theo~et~cal reflectance factor specha 
(25) for varlous concennatlons of H20, Corn- 
paring these computed reflectance factors \\ it11 
the Europa LTT spech-tun (Fig 2) she\\ s that the 
mTS obser~ ations ale consistent \t ith the IR- 
derlr ed abundance foi wax elengths less than 
250 nm At lollgel navelengths. the obsen ed 
leflectance is highei than the theoret~cal values, 
tlns could be due to the use of 296 K, liquid- 
phase absorption coefficients in the calcula- 
tions. which may be inaccurate for H202 in 
lo\\:-temperature ice. 

Production of H20, on Europa may be ini- 
tiated through dissociation of surface water 
~nolecules into H + OH by the incident ener- 
getic plasina (6). Diffilsion and chemical com- 
bination of fsvo OH radicals yields H,02. Re- 
actlve scattenilg of H and OH by watei to form 
H,02 also may occur (30) The energet~c pal- 
t~cle's energy flux (31) is @ -- 5 X 10'' heV 
sp '  cmp2, and each 100 eV of energy nil1 
produce G * 0 4 H20, molecules, on the basis 
of ~esults for a-pait~cles (32) Solar L\  radia- 
tion may also d~ssociate H20. but the a\erage 
d~ssoc~at~ng LTT eneigy flux IS < 1 o of that 
fiom the eneigetic particles (33) W ~ t h  the 
above paiameters. the production rate of HZ02 
is G @ = 2 X 10" molecules s p l  cmp' The 
inc~dent part~cles can also desnoy H20, inole- 
cules. either by direct dissociation or by pro- 
duction of H. \vhich then reacts with H202 (34). 
LI7e estimate the rate of destr~lction of H202 by 
the energetic particles using the flux (31) cp -- 
1.2 X 10%pl cmp' and a11 assumed cross 
section of o = 1 X lop'' cm2, ~vllich is the 
molecular size of H,02. This gives a loss rate of 
o cp = 1.2 X lop-  s ' .  Absorption of solar UV 
radiation. pa~-ticularly in the 210- to 300-nru 
region, dissociates H,O, inolecules with a di- 

Fig. 9. Europa UV reflectance 1.01 1 I I 1 1 I 1 1 I I I I I I 
factor compared w i th  laboratory 
diffuse reflectance measurements 
and theoretical values. The Cali- 
leo UVS spectrum (@) is an aver- 
age for longitude; ' 10O0W t o  
140°W and was obtained simul- 0.6- - 

taneously w i th  the NlMS obser- 5 - - 
vations. The laboratory spectra RJ 0.1 3% H202 
(solid lines) are for a 0.16% 2 0,4- - 

H202  solution and a pure water- 5 - - 

ice sample, both a t  8 0  K. Each = 
was measured relative t o  an alu- 0,2- - 

minum mirror and collectively - - 

n o r m a l i z e d t o E u r o p a d a t a a t  0,0 1 I 1 I 1 I 1 1 1 I I I I 
long wavelengths. 200 220 240 260 280 300 320 340 
reflectance factors (dashed lines) Wavelength (nm) 
were computed for the IR-de- 
rived H202  concentration (0.13 t 0.07%) and grain size (60 k m ) .  

umally averaged late of 2.5 X (gas 
phase value) (33) and 1s effectwe to depths 
>250 p n ~  (23) We ignore the recomb~nation of 
the spatially contained dissociation products 
(the cage effect). which can reduce photon- 
induced loss by a factor of >3 (35). The net 
loss rate will therefore be (2.6 to 0.12) X lop" 
sp '  (lifetimes - 4 days and -100 days, respec- 
tively), implying surface densities ffom (0.08 to 
1.7) X 10" cmp'. The vertical stopping dis- 
tance for energetic electrons (at 60' incidence 
angle) is about 180 pm (31), and less for ions, 
so the average H20, concentration in this 
- 180-pm-deep radiolysis layer \\:ill be (0.4 to 
9) X 10'" cnlp'. or 0.013 to 0.3% relative to 
water ice. These estimated limits and OLU. de- 
rived concentration of 0.13% are consistent. 

The abundance of H202. and the existence 
of a Na and 0, ahnosphere (3, 36), thought to 
be produced by energetic-particle bombard- 
ment of the surface (3,lO. 36), demonstrate that 
surface chemisny on Europa is dominated by 
radiolysis. At the energy influx rates used 
above, the optically sensed surface layer can be 
completely modified in a few tens of years. 
Ternporal changes in the jovian magnetospheric 
energetic plasma can alter Europa's H,02 
abundance, thereby changing Europa's 210- to 
300-n~n reflectance; such changes have been 
observed in Europa's UV reflectance (37). 
Because CO, and SO, are present. thein- 
s e l ~ e s  the possible products of radiolysis 
(10).  related products such as H2S0, and 
various carbon compounds should be inves- 
tigated. Predictions. characterization. and 
identifications of surface species on Europa 
rnust consider radiolysis effects. 
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Measurements from the winter of 1994-95 indicating removal of total reactive 
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over the Antarctic and more recently also 
over the Arctic (3, 4) will gradually disap- 
pear, although this process may take several 
decades. 

Recent Arctic ozone losses have been as- 
sociated with particularly low temperatures, 
as in the winters 1992-93, 1994-95, 1995- 
96, and 1996-97 (5). Reduction of odd nitro- 
gen (NOx = NO + NO,) concentrations in 
the gas phase is an important factor in deter- 
mining the severity of ozone destruction (6).  
This NOx reduction may be either temporary 
via conversion of NOx into HNO, catalyzed 
by aerosol surfaces (denoxification), or per- 
manent via removal of HNO, by sedimenting 
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Fig. 1. (A) Arctic NO, profiles in mid- 
February 1995. Symbols: squares, bal- 
loon-bome MIPAS-B observations (72); 
dots, aircraft-bome observations (76). 
Solid symbols are NO, measure- 
ments; open symbols mark NO; de- 
duced from MIPAS N20 measure- 
ments (13). NO; represents the unper- 
turbed case (without denitrification). 
The model calculations are denoted 
by lines [dotted line, mid-latitude ref- 
erence NO profile (28); dashed line, 
scenario 0 kith subsidence of air only 
(no particle sedimentation); red line, 
scenario 3 showing the effect of deni- 
trification due to sedimenting ice and 
NAT particles]. (B) Vertical redistribu- 
tion of NO, (red) and H20 (blue). In 
addition, measured ANO, is shown 
(0). 
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