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Unconditional Security of 
Quantum Key Distribution over 

Arbitrarily Long Distances 
Hoi-Kwong Lo1* and H. F. ChauZ 

Quantum key distribution is widely thought to  offer unconditional security in 
communication between two users. Unfortunately, a widely accepted proof of 
its security in the presence of source, device, and channel noises has been 
missing. This long-standing problem is solved here by showing that, given 
fault-tolerant quantum computers, quantum key distribution over an arbitrarily 
long distance of a realistic noisy channel can be made unconditionally secure. 
The proof is reduced from a noisy quantum scheme to  a noiseless quantum 
scheme and then from a noiseless quantum scheme to a noiseless classical 
scheme, which can then be tackled by classical probability theory. 

The art of secure con~n~unication-c~yptog- 
raphy-has a long history. Before two parties 
can communicate securely, they often must 
share a secret randonl string of numbers (a 
key) for encryption and decryption. The se- 
crecy of the message depends on the secrecy 
of the key. A problem in conventional clyp- 
tography is the key distribution problem: In 
classical physics, there is nothing to prevent 
an eavesdropper from monitoring the key 
distribution channel passively, \vithout being 
caught by the legitimate users. 

Quantum key distribution (QKD) (1-5) 
has been proposed as a solution to the prob- 
lem. The quantum no-cloning theorem states 
that it is impossible to make an exact copy of 
an unknown quantum state ( 6 ) .  Thus. it is 
generally thought that eavesdropping on a 
quantum channel will almost surely produce 
detectable disturbances. The two users can. 
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therefore. use part of the~r  quant~lm signals to 
test for eavesdropping Only when the elror 
rates are acceptable will they use the q~~an tum 
signals to generate a lcey Thus. the two users 
(commonly called Allce and Bob) have the 
co~lfidellce that if an eavesdropper (common- 
ly called Eve) has a nonnegligible amount of 
info~mation on the final key, she will almost 
surely be caught. even if she has infinite 
computing power and access to a quantum 
computer. Incidentally. several recent exper- 
iments have demonstrated the feasibility of 
QKD over tens of kilometers (7). 

"The ~llost important question in quantum 
c~yptography is to determine how secure it 
really is" (8. p. 16). QKD is widely claimed 
to provide perfect security. However, this 
viewpoint has been under renewed scrutiny 
for two reasons. First, contrary to well-!mown 
claims of ullcollditional security (9), a class 
of other quantum cryptographic schemes. in- 
cluding so-called quantum bit commitment 
and quanhlm one-out-of-two oblivious trans- 
fer, has recently been shohvn to be insecure 
(10) Cheate~s can defeat these schemes by a 
subtle application of the well-known Ein- 
stem-Podolsky-Rosen (EPR) paradox (11) 
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and by delaying their measurements. These 
"no-go" tlleore~ns not only shattered the long- 
standing belief in the security of those 
schemes, but they also underlnined the con- 
fidence in QKD itself. Second. a convincing 
and rigorous proof of the security of QKD 
has been missing despite extensive investiga- 
tions (12-15). Thus. the foundation of quan- 
turn cryptography has been shaky. Here. we 
solve this long-standing proble~n by proving 
that, given q u a n t ~ ~ n  computers, QKD can be 
made ullconditionally secure over arbltrarlly 
long distances. 

A rigorous proof of the security of a QKD 
sche~ue requires the explicit construction of a 
procedure such that, whenever Eve's strategy 
has a non~legligible probability of passing the 
verification test by Alice and Bob, her infor- 
mation on the final key will be exponentially 
small (16-17). This procedure must be se- 
cure and efficient, even when Alice and Bob 
use imperfect sources and devices and share a 
nolsy quantum chaunel 

Most analyses of the securlty of QKD have 
dealt with single-particle eavesdropping strate- 
gies (12). with iilunediate or delayed measure- 
ments, as well as the so-called collective attacks 
(13), in which Eve brings each signal particle 
into interaction with a separate probe system 
but then, after heanng the p~lblic d ~ s c u s s ~ o ~ ~  
betneen ,4lice and Bob. measures all probes 
together. Security against the nlost general type 
of attack. the so-called joint attack. has been 
investigated by Deutsch et 01. and also by May- 
ers. The discussion by Deutsch et nl. was re- 
stricted to the special case of perfect devices 
(14). It introduced the concept of quantum pri- 
vacy amplification, based on a process called 
entanglement purification, which was studied 
by Bennett. DiVincenzo, Smolin, and Wootters 
(BDSW) (18). Earlier versio~ls of Mayers's 
proof (15) have not been accepted as definitive. 
His nlost recent version of the proof is more 
detailed and complex (19) He ploposes a proof 
of secuntj of the Bennett and B ~ a s s a ~ d  (BB84) 
(2) scheme agalnst jo~nt attacks In the presence 
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of detector and channel noise but with an ideal be combined and applied to QKD to distin- quantum signals is strictly zero 
hxsted single-photon source. Our current work 
and work by Mayers (19) are contenlporaneous 
and independent. They differ greatly in their 
premises. methods, and consequences. (i) May- 
ers's work deals with the standard BB84 QKD 
protocol (2) for preparation, tsansmission, and 
measure~nents of nonorthogonal states. His ap- 
proach does not require Alice and Bob to have 
a quantulll computer, although Eve may have 
one. I11 contrast. our proof applies to a new 
QKD protocol. involving fault-tolerant sharing 
and purification of so-called EPR pairs. and 
requires that Alice and Bob have quantum com- 
puters. (ii) Mayers's work (19) assumes an 
ideal single-photon or EPR-pair source. thus 
disallowing a beam-splitter attaclc. [A testing 
procedure for an allegedly ideal EPR-pair 
source fro111 an untn~sted velidor has recently 
been suggested by Mayers and Yao (20).] In 
contrast. our work allows the reception of ~111- 
tn~sted i~nperfect quanhlm :>ignals fiom the 
channel (21). (iii) Our proof and protocol allow 
QKD to be securely extended o\er arbitrarily 
large distances through a chain of insecure 
relay stations. A similar extension of BBS4 
in Mayers's proposed proof would require 
secure relay stations. to which Eve does not 
have access. ( iv) Our proof is concept~~al ly  
simpler. ( v )  Our techniques have nide-  
spread applications outside QICD. 

l l l ly  is a proof of secuiity of QKD so 
difficult? In a joint attack. Evc: treats the whole 
sequence of quanhun signals as a single entity. 
She couples this entity with her probe and then 
unitarily evolves the combined system. She for- 
wards a subsystem to Bob and keeps the re- 
maining subsystem for eavesdropping purpos- 
es. Eve can use any unitary t~ansfo~~nation she 
likes. and yet. a secure QI(LD scheme must 
defeat all of them. Moreover. Eve may attempt 
to mask her presence by athlbuting the errors 
caused by her eax esdroppnlg attack to nornlal 
transmlsslon nolse. Furthemiore. because the 
pashcles are now genelally entangled with each 
other. a naive application of classical probabil- 
ity theo~y may lead to fallacies [see the EPR 
paradox ( I  I )]. 

Despite these apparent difficulties. we 
show that it is possible to distinguish a mali- 
cious Eve from noise. Moreover. it is possible 
to use classical probability theory to establish 
the security of QKD. 

Techniques and importance of results. 
Assuming that users have access to quanhlln 
computers, we show the security of QKD by a 
reduction in hvo steps. The central theme of the 
first step is to reduce the noisy quantum scheme 
(imperfect devices, noisy channels, storage er- 
rors. and so forth) to a noiseless quan t~~~m 
scheme. We do this by combining the ideas of 
"q~~antunl repeaters" (22, 23) and fault-tolerant 
q~lant~un co~np~~tat ion (FTQC) (24. 2 j ) .  Al- 
though these are existing ideas in the field, we 
nlalce the nontrivial observation that they can 

guish noise from a malicious Eve. 111 partic- 
ular. we note that lc~lowing the en-or syn- 
drome does not help an eavesdropper. There- 
fore, we can give an eavesdropper full control 
of the quallh~lll repeater stations uithout 
compromising sec~~ri ty .  

Even in a noiseless quantum scheme. Al- 
ice and Bob are required to verify that the 
particles are antampered by Eve. Things will 
be easy if one can apply classical arguments 
to solve this quanhnn problem at hand. How- 
ever. as illustrated by the EPR paradox, nai've 
classical arg~~ments  often lead to fallacies. 
The most important technical contribution of 
this paper is our second theme-reducing the 
noiseless quantum verification scheme to a 
classical one. Finally. we establish the secu- 
rity of the classical verification scheme by 
classical probability theory. The security of 
the quanhnll scheme then follows. 

The use of classical argunlents in our 
q ~ ~ a n h n n  problem allows us to simplify our 
discussion greatly. We emphasize that the 
validity of this usage is highly paradoxical. 
Classical arguments work in our quanhnn 
problenl because all of the observables 0 , ' s  
under consideration are diagonal with respect 
to a single basis 33. In more detail. let us 
consider the ohserl-able $1, which represents 
a complete von Neumann measurement along 
the same basis 3. Because all of the 0 , ' s  
under consideration are diagonal with respect 
to 3, 114 commutes with all the observables 
0 , ' s .  Therefore. the measurement : I 1  along 
basis a will in no way change the outcome of 
the subsequent 0, 's .  Without any loss of gen- 
erality, one can imagine that such a complete 
von Neumann measurement X f  is always per- 
folmed before the measusement of subse- 
quent 0 , ' s .  In other words, the initial state of 
the quantum system is simply a classical 
mixture of eigenstates of $1. and hence. clas- 
sical arguments carry over to the quanhnn 
case. We remark that the 0 , ' s  that we con- 
sider are coarse-grained observables (obsell-- 
ables with degenerate e igen~  alues) rather 
than fine-grained o b s e ~ ~ a b l e s  (observables 
with nondegenerate eigenvalues). 

Quantum-computational protocols. The 
execution of our secure QKD scheme requires 
large-scale quantum computers for both er- 
ror correction and verification. Building 
such conlputers is a technological feat that 
is far beyond our current tech~lology. How- 
ever, all existing QKD security analyses 
require some idealization also. In an actual 
experi~nental inlplementation of polariza- 
tion-coding BB84 (a standard "prepare- 
and-measure" P.M scheme) over a substan- 
tial distance (say 40 km) of a lossy quantunl 
channel using coherent states, Eve may. in 
principle. break the syste~ll  completely by 
a generalized beam-splitting attack (26) .  
This is so even when the bit error rate of the 

Quantum-computational protocols like ours 
are worthy of analysis for several reasons. First, 
unlilce the usual P/M schemes, they extend the 
range of secure QKD to arbitrarily long distanc- 
es even with insecure quantum repeaters. Sec- 
ond. when implenlented over a noisy channel 
without repeaters. it is conceivable that they can 
tolerate a higher noise level than a standard P I N  
scheme. Third, a proof of security and the trade- 
off behveen noise and key sate are much easier 
than those for PiM schemes. Indeed, our 
scheme provides a conceptually sinlple and rig- 
orous proof of the security of QKD without the 
fill1 complexity of a P I N  scheme. 

EPR pairs. Before we repolt our QKD 
scheme in detail, let us first recapitulate the 
usefulness of an EPR pair, that is. a si~lglet 
state (1 /-\/2)( I TJ ) - I )) of a pair of quan- 
tum bits (qubits) (27)  in QKD. If two mem- 
bers of an EPR pair are measured along any 
common axis, each member will give a ran- 
dom outcome. and yet, the outcomes of the 
two lnenlbers will always be antiparallel. 
This spooky action at a distance defies any 
simple classical explanation and is at the core 
of EPR paradox ( I  I ). 

Now. suppose hvo distant users share R 
EPR pairs. Then, the random outcome of mea- 
surement along a conmlon axis generates an 
R-bit key between them. The laws of q~~an tum 
physics assure that the key is truly randonl and 
that Eve cannot have any information on its 
value. Indeed. the two lemmas in supplementa- 

material (available at ~w\~\~.scie~lcemag.org: 
feature!datai98403j,shl) shohv that, to generate 
an almost perfectly secure R-bit key. Alice and 
Bob only need to share R EPR pairs of almost 
perfect fidelity (28). Therefore, all we need for 
secure QIU) is a way for Alice and Bob to share 
EPR pairs and to verifV that, indeed, they are 
EPR pairs. We focus on these EPR distribution 
and verification problems. There are two issues 
that Alice and Bob have to address: noise and 
Eve. 

Reduction t o  a noiseless scheme. One 
can classify errors in an EPR-pair distribution 
process into four types. First, the quantum 
conl~llunication channel between Alice and 
Bob is generally noisy. Second. the EPR 
source may be imperfect in itself. Third, er- 
rors may occur during the storage of quantum 
inforn~ation. Fourth. errors may also occur 
during computation: because elementary 
gates and measuring devices for quallhlm 
computation are generally imperfect. gate er- 
rors and measurenlent errors may arise. 

The last three types of errors can be fixed 
by recently developed quantum error correc- 
tion (29) and fault-tolerant quanhlln compu- 
tation (FTQC) (24. 25) techniques. In partic- 
ular, there is a "threshold result" in FTQC: 
Assuming an independent noise model and 
that the emor rates for each primitive compu- 
tational gate and for each time step of storage 
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are smaller than some positive threshold val- 
ues, one can perform arbitrarily long quan- 

ers. For example, in tlie case of a depolarizing 
channel, it is known that a fidelity of 112 is 
the threshold value (18). 

With quantum repeaters and FTQC, the 

focus on the noiseless scheme. 
The goal of verification. To make sure that 

tum computations with an arbitrarily high 
fidelity (2.5). The essence of FTQC is to 

there is no substantial eavesdropping, Alice and 
Bob must verify that the state of the logical 
qubits is, indeed, that of N EPR pairs. Without 
any loss of generality, we can allow Eve to not 
merely act on the N EPR pairs while they are 

defeat errors by encoding quantum states in 
quantum error-correcting codes (QECC) and 
then performing quantum computation on the 

usual threshold result can be extended to 
distributed quantum computation over a real- 
istic noisy quantum channel (31). In other 

encoded states. 
Quantum repeaters. We must consider 

words, any distributed quantum algorithm, 
including the EPR-pairs distribution process, 

being shared but to actually prepare them in an 
arbitrary state of her choosing and then give 
them to Alice and Bob (14). She claims that 
they are perfect EPR pairs. Alice and Bob will 
be happy to sacrifice a small number m of those 
pairs to verify Eve's claim. If any one of the m 
tested pairs fails the test, then all the Npairs are 

the first type of noise-channel noise. If the 
quantum communication channel is vely 
noisy (for example, it is very long), we can- 
not apply the threshold result in FTQC to 
combat quantum communication errors. For- 

that works in the noiseless case can always be 
extended to the noisy case. 

Error syndrome contains no useful infor- 
mation for an eavesdropper. We make the 
most generous assumption that Eve completely 

tunately, the idea of quantum repeaters has 
been proposed as a much more efficient way 
of correcting quantum communication errors 
(23). This idea is summarized as follows. 

Given impure EPR pairs shared between 

controls the q~tantum repeaters and the quantum 
communication channel. Alice and Bob need 

discarded. However, if all the m pairs pass the 
test, the remaining N - m pairs will be accepted 
as singlets and used to generate the key. The 
goal of the verification is for Alice and Bob to 
make sure that Eve has a very small probability 

only trust their own quantum computers and 
authenticated classical messages from each oth- 
er. There is a subtlety for us to address. If Eve 

two distant observers, they can apply local 
operations and classical communication to 
distill a smaller number of higher fidelity 
EPR pairs in a procedure known as entangle- 
ment purification (18). However, for distanc- 

follows the correct procedure, she will not be 
caught. However, she does learn about the error 

of cheating successfully. By cheating success- 
fully, we mean that the m tested pairs pass the 

syndrome (that is, the pattern of measurement 
results) generated during a FTQC, which allows 

verification test and yet the remaining N - m 
pairs, if given a yes or no test of being N - m 
singlets, will give "no" as an answer (34). 

The security of our quantum verification 
scheme will automatically guarantee the se- 

the error-correction apparatus to correct a cor- 
rupted state to a former value. So, the question 
is Can the error syndrome tell her anything 
useful about the state? The answer is "no" 
because of the following. Mathematically, each 
of Alice and Bob's state can be witten as a 

es much longer than the coherence length of 
a noisy quantum communication channel, the 
probability that a quantum state will remain 
error-free is exponentially small. Therefore, the 
fidelity of transmission is so low that standard 

curity of the corresponding QKD scheme [re- 
fer to (28) for an explicit bound on Eve's 
information]. We will now consider the se- 

purification methods are not applicable. 
Quantum repeaters are essentially simple 

tensor product of the logical qubits (which ac- 
tually contain the quantum information) and the 

curity of our quantum verification scheme. 
Essentially, what Alice and Bob are trying 

quantum computers installed throughout a 
quantum communication channel. They are 

ancillary qubits (which contain the error syn- 
dromes) (32); that is, the wave h c t i o n  1 !P) 
can be written as ZJi ciil a&), 8 1 e,)A, where 
st~bscripts L, A, i, and j represent the logical 
qubits, the ancillary qubits, the logical state (in 

to do is to distinguish singlets from triplets. 
Although there is no way for Alice and Bob 
to do so with certainty using only local op- 
erations and classical commnunication, they 
can do so with a vely high probability. 

used to divide the channel into shorter seg- 
ments, which are then purified separately, 
before they are connected. The number and 
locations of quantum repeaters are chosen so 
that it is possible to create EPR pairs with 
sufficiently high fidelity between the two 
ends of each segment. After creating EPR 
pairs that are shared between the two ends, 
one applies entanglement purificaton by us- 
ing quantum repeaters. This will, at the cost 
of discarding some pairs, increase the fidelity 
of the remaining pairs. Afterwards, EPR pairs 
shared between various segments are con- 
nected together by "quantum teleportation" 
(30). Indeed, a highly efficient procedure in- 
volving a sequence of entanglement purifica- 
tion and teleportation has been devised that 
allows the reliable sharing of EPR pairs be- 
tween two arbitrarily distant locations (23). 

Three important remarks are in order. 
First, with two-way classical communication, 
quantum repeaters can greatly improve the 
yield of distillation (18, 23) over the standard 
fault-tolerant circuits. Second, even highly 
imperfect quanhim repeaters can do the job 
very well: It has been argued (23) that an 
error rate in the percent level is readily toler- 
able. Third, a strength of our approach is that, 
assuming perfectly reliable local quantum op- 
erations by Alice and Bob, one can actually 
calculate the threshold value for tolerable 
noise between two adjacent quantum repeat- 

some orthonormal basis), and the error syn- 
drome, respectively, and cq7s are some complex 
coefficients. (In reality, Alice and Bob's system 
is generally entangled with Eve's probe. How- 
ever, this does not change the essential point of 
our argument.) Because of FTQC, although the 
state of the ancillary qubits evolves unpredict- 

The goal of a quantum verification 
scheme is to verify that the state of the N 
pairs is, in fact, N singlet. A direct testing of 
a random subset of EPR pairs requires an 
exponential amount of resources in terms of 
the security parameter k, where the probabil- 
ity for Eve to cheat successfully is, at most, 

ably over time, the state of the logical qubits 
will, with a very high fidelity [ l  - O(e-7 for 
some arbitrarily chosen P > 0 (33)], follow the 
desired computation and remain unaffected by 
the errors. As long as the gate error rate and 

e-';. Direct testing of a random subset is, 
therefore, not an efficient verification scheme. 
To understand this point, suppose Eve cheats by 
inserting a single nonsinglet among the N pairs 
and only m random pairs are tested by Alice 
and Bob. There is a probability (N - m)lN for 
this nonsinglet to remain untested. Consequent- 
ly, Eve has at least a probability (N - m)lN of 
cheating successfUlly. To prevent this from 
happening, it is necessary for m to be of order 
N. Even when m equals N - 1, the probability 
for Eve to cheat successfully is still at least lIN. 

storage error rate are sufficiently small, the 
subsequent verification and key generation 
steps can be thought of as being performed 
solely on the logical q~tbits. In other words, the 
ancillary qubits decouple from the verification 
step. Accordingly, we shall ignore the ancillary 
qubits and focus only on the logical q~tbits. 

If there is no appreciable eavesdropping, 
the logical qubits will represent the desired 

For this to be exponentially small in k, the 
number of photons transmitted N, must be ex- 

state. Of course, an honest Eve can learn as 
much as she likes about the error syndrome. 
The general theory of QECC tells us that the 

ponentially large in k. 
A much more efficient way of verifying a 

quantum state exists. It is due to the random- 
hashing idea by BDSW (18). (BDSW pro- 
posed it for error correction, but here we use 

error syndrome contains absolutely no infor- 
mation about the encoded quantum state (29). 

In summary, we have reduced the proof of 
security of our noisy QKD (or EPR delivery) 

it for verification.) It is in the same spirit of a 
classical random-hashing scheme which we 
will now describe. scheme to that of a noiseless one. Now, we 
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A classical verification scheme. Imag- 
ine a game in which Eve locks an N-bit string 
x in a box and Alice and Bob are allowed to 
ask a small number m < N of "fair" questions 
about it, which Eve must answer truthfully. A 
fair question is a yes or no question whose 
answer is "yes" for exactly half of all N-bit 
strings. Thus, Is the first bit l ?  and Are the 
first and third bits equal? are fair questions, 
but Are all the bits l 's? is unfair. If all of 
Eve's answers are consistent with the as- 
sumption that the string x is all l 's, Alice and 
Bob must "accept" the string. Otherwise, Al- 
ice and Bob must "reject" the string. Finally, 
Eve opens the box and shows Alice and Bob 
the string to prove that she has answered 
faithfully. Eve wins if the string is not all 1's 
and yet Alice and Bob have accepted the 
string. [Alice and Bob win if the string is not 
all 1's and they have rejected the string. If the 
string is, in fact, all l 's, the game is a draw]. 

If Alice and Bob ask only single-digit 
questions of the form Is the kth bit a l ?  then 
Eve has a good chance of winning by choos- 
ing a string with a single 0 at a random 
location. However, if Alice and Bob instead 
ask Eve about the parities of random subsets 
of the bits, they quite likely catch any string 
that is not all 1s. 

For example, if the unknown string is x = 
1101 and Alice and Bob choose a subset 
consisting of the second and third bits (this 
can be represented conveniently by an index 
string s = 01 lo), the parity x s is 1. This test 
reveals that x is not all 1 's, because an all- 1's 
four-bit string would have had parity 0 on this 
subset. More generally, the parity of a subset 
s of the bits in a string x is the inner product, 
or modulo-2 sum of the bit-wise AND of 
strings x and s, and it is denoted by .u . s. [In 
this example, x . s = 1 . 0 + 1 . 1 + 0 .  1 + 
1 0 = 1 (mod 2).] The probability that two 
different strings give the same answer for m 
iterations of random parity check is no more 
than 2-"' (18). Thus, by checking only a few 
subset parities (say 20), Alice and Bob can 
reduce their chance of accepting an x that is 
not all 1s to less than one in a million. 

Eve must not know the index strings before- 
hand. Otherwise, she could always cheat suc- 
cessfully, in a similar way as a smuggler who 
knows beforehand which of the several bags a 
custom inspector will open in an airport. In- 
deed, because the string has N bits and there are 
only m constraints (generated by m rounds of 
parity verification), there are clearly exponen- 
tially many (namely, 2"- In), strings that will 
pass the test. However, because Eve does not 
know the index strings beforehand and because 
the index strings are chosen randomly, Eve 
effectively has to put her bet on a single string 
without prior knowledge. We see from the last 
paragraph that any string x # 11 . . . 1 chosen 
by Eve has only an exponentially small proba- 
bility ( 2 - 9  of passing the verification test. 

Our quantum verification scheme. Now, where i, denotes the state of the kth pair, 
we construct an efficient quantum verifica- which runs from i)i) to 11, all z,, , . , iv , '~  are 
tion scheme that is similar to the classical some complex coefficients, and the 1 j )  values 
verification scheme that we have just de- folm an orthonormal basis for the ancilla. 
scribed. Consider the so-called Bell basis, Each state 1 u )  represents a particular cheating 
qz and (DL, where strategy chosen by Eve. 

1 The goal of a quantum verification scheme 
= ( 1 ' /  ) 1 ' /  )) (1) is to verify that the string describing the state of 

x 2  the ~Vpairs is, in fact, all j's. We now construct 
and an efficient quantum verification scheme based 

1 on the quantum random-hashing idea by 
(D = - ( 1 ) 1 )) (2) BDSW (18). BDSW showed that one can com- 

,/2 pute the parity of any subset of the ~IV-bit string 
With the convention in (18), Bell basis vec- by using local operations and classical cornmu- 
tors are represented by two classical bits nication only (35). The parity is "collected" 

(D+ = (J(j into a single destination pair; it is determined by 
the outcomes of measurements performed on 

q +  = (Jf  that pair, which has to be discarded afterward. 
(D- = i(j More specifically, the parity is found by noting 

q -  = if whether the measurement outcomes on the two 
(3) members of the destination pair are parallel or 

(Because Bell basis vectors are maximally antiparallel. 
entangled, one should never think of them as If Eve prepares a classical mixture of 
direct product states.) A complete basis for products of Bell states, it is not too difficult to 
N-ordered pairs of qubits (what we shall call 
IV-bell basis) consists of products of Bell 
basis vectors, each of which is described by a 
2N-bit string. In the absence of an eavesdrop- 
per, Alice and Bob share N singlets, \\.hose 
state is described by a 2N-bit string of i 's, 

I 11.. .i). 
What happens when there is an eaves- 

dropper? Recall that we allow Eve to not 
merely act on the ,?I EPR pairs while they are 

show that classical arguments apply directly 
to the quantum verification problem and 
Eve's probability of cheating successfully is 
negligible [see (36) for details]. 

Why do classical arguments work for a 
quantum problem? However, instead of pre- 
paring a classical mixture of products of Bell 
states, in the most general eavesdropping strat- 
egy as shown in Eq. 4, Eve prepares a general 
state, which is entangled with her probe. The 

being shared but to actually prepare them in big question is Can Eve prepare a more general 
an arbitraly state of her choosing and then state to enhance her probability of cheating 
give them to Alice and Bob. The pairs may be successfully? The crux of our paper is the fol- 
entangled among themselves as well as with a lowing claim: If Eve prepares a general state to 
probe in Eve's hands (14). A system de- cheat in the BDSW random-hashing verifica- 
scribed by any mixed state can be equivalent- tion scheme, her probability of cheating suc- 
ly described by a pure state of a larger system cessfully will be exactly the same as in the 
consisting of the original system and an an- situation when she premeasures that state along 
cilla (10, 14). As discussed by Deutsch et al. the N-Bell basis before handing it over to Alice 
(14), by considering the larger system in- and Bob. In other words, a general state offers 
stead, we shall, without a loss of generality, no advantage over a mixture of products of Bell 
consider that Eve prepares a pure state states. With this quantum to classical reduction 

I t l )  = C Cal,.h2, ,A\.j 
result, (36) applies to any eavesdropping strat- 

, , . , 2  ' ' ' , I , ,  j 
egy. This proves that Eve's probability of cheat- 
ing successfully is negligible and our QKD 

X 1 i i  i )  @ 1 j )  (4) scheme is secure against all possible attacks. 

Fig. 1. A sample one- A ,, way hashing protocol 
used to determine 5 ,  ex, 00 ( 1 Ja- s l - x l  
and s2.x2 for an un- 
known three-Bell state. 
Following the conven- 
tion of (78), B, and B,, 
denote bilateral rotatioii 0 1 \ a ,' 1 
of 7~12 along the x and y 
axis, respectively; ux de- 6 
notes a unilateral rota- 1 
tion of a along the x  MI S 2 '  x3 

axis; and the symbol 
O-fE denotes a bilater- 0 1 
al controlled NOT oper- 
ation. M denotes a bilateral measurement 
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Proof of our claim. Consider the follow- Aljce and Bob receixe all of their quantum ing in a quanhlln statistical theory. To illustrate 
ing observables 011 a state 1 1 )  of :IT pairs of particles. So long as Eve does not hlo\v the this point, we gil-e two other examples of ap- 
qubits shared b e t l ~ e e ~ i  Alice and Bob. We subsets beforehand. her probability of cheat- plications of our quantum to classical reduction 
define these obser\-ables by their actions on ing successfully is exponentially small (see result. (i) Suppose two distant observers share A' 
the 2" -"\:-Bell states. \vliich f o ~ m  a coniplete supplementaly material, a\-ailable at a-\$-\$-. pairs of qubits, and estimate the number of 
basis. Let 11: defined by 11' 11.) = u .  11.). be scie1icemag.org~feature~data984035.slil). singlets in those :\: pairs. By the nunlber of 
the obsen-able that gives the 2.V-bit string Second, during the conlputation of the singlets, we mean the expected ~ l u ~ i l b e r  of 
representing the state 11' in BDSLI: notation. parities of subsets. the state of the .\'pairs of "yes" answers if a singlet or triplet niea- 
170; any index string s.  let Qy, defined by qubits is transfor-~iled by a unita1-y transfor- surelnent was made on each pair indil-idu- 
Q, 1 11.) = (.r 11') 1 \Y). be the obser\,able tliat niation L- I , ,~ . . . , . 3~ , .  ~vhich depends on the sub- ally. ( i i)  Under tlie assumption tliat signal 
gil-es the parity of tlie subset s of tlie bits. sets 5,. But kould that unitary transfornlation carriers are perfect single photons. put a 
Finally, let R = 1 i i. . - i ) ( i i .  . .i 1 be the L - , ~  , , , . . . . . A ,  somehow spoil our reduction argu- probabilistic bound on an eal-esdropper's 
projector onto a state of ."\: singlets. All the ~ n e n i  fro111 a quantum to classical verifica- information in BB84 as a function of the 
abol e operators refer to a single basis (name- 
ly, the :\:-Bell basis). Because all the obser7- 
ables (R, U: and 0,) are sin~ultaneously di- 
agonalizable n-ith respect to tlie X-Bell basis, 
R and all the Qb ~ a l u e s  conllnute with hl: 
Therefore. neither the value of R nor any of 
the Qs d u e s  are affected by a prior measure- 
ment of It: In other words; for any state ~ i j  
that Eve might have supplied. neither the 
sequence of subset parities nleasured in the 
verification stage nor the result of the final 
hypothetical measurement of R would, ha\-e 
been affected if El-e had premeasmed I ii) in 
Bell basis (that is. ~ n a d e  a nleasurenlent of 1.T') 
before l ~ a ~ i d i ~ i g  the state to Alice and Bob. 
Incidentally, tlie fact that a prenleasurernent 
does not change the outcomes of some sub- 
sequent measurenients is l~iglily renliniscent 
of work by Griffitlis and Niu ( 3 7 ) .  

Subtleties in our proof. The following ex- 
ample illustrates the coniputation of parities and 
the subtleties in\,ol\wl. Suppose Alice and Bob 
share three pairs of qubits. II'ith the procedure 
specified in BDSiV. the computation of the par- 
ity of the first subset (for example. s, = 001 101) 
call be done by tlie circuit diagram shown in Fig. 
1A. The parity is collected into a single pair and 
is deteniiined by whether that pair gives a par- 
allel or antiparallel outcome ~vhen both mem- 
bers are ~neasured along the ; axis. 

The coniputatlon itself. up to phases, per- 
forms a pernlutation on the space of all 2"V-bit 
strings. After the coniputatio~i, the measured 
pair is dropped fiom consideration, and only 
hvo pairs remaul. The colnputation of the parity 
of the second subset (for exanlple, S, = 1001 ) 
by the BDSIV procedure is shown in Fig. 1B. 
After the conlputation, another pair is measured 
and dropped from consideration. Therefore. 
only a single pair of the original three is left 
after the co~nputation of the two parities (for ,s, 
and s,). A simple ~mitaly descliption ( I  0) of the 
01-era11 computation is that it maps, up to phas- ----.- .....- 
es. the state / 11 11 11) to / 101 11 1). Suppose 
also that, on passing the \-eriiication test. Alice 
and Bob generate their secret key by nleasuring 
the reniaining pair along the r axis. with an 
"up" for Alice's result nleaning "O" and a 
"do~vn" nleaning "1 ." 

A nurnber of subtleties deserve careful 
d~scuss~ons  Fust. as 111 tlie class~cal case. the 
cliolce of subsets can be announced onl> aftel 

tion'? Fortunately. the answer is "no''. Despite 
the apparent complexity of the parity conlpu- 
tation procedure. the bottom-line answer that 
Alice and Bob obtain is simply the parities 
(that is. the eigenvalues of the operators Q,'s 
of their choice). Therefore, the xrification 
test proves that. for any general cheating 
strategy by E1.e tliat passes the test \vith a 
probability of at least 2T'. the conditional 
fidelity of the state before the parity compu- 
tation as A' singlets, 1 ii .  . .i), is 1 - 
O(2-I"" I ) .  Consequently, the state after the 
parity colnputation will, with the sanle fidel- 
ity; be L; l i i l . . i ) .  

Third, in our quantuni x erification proce- 
dure: Alice and Bob have to disclose all their 
nleasurenlent outcomes in a public channel. 
For each measured pair. there are four possi- 
ble outcomes. TJ, JJ, 11 ; and I! , thus result- 
ing in two bits of infornlation. This is more 
than the one-bit (0 or 1 ) parity infonnation. 
Now, the question is Can Eve son~el~oar ben- 
efit from this additional info~miation? The 
answer is "no" (this discussion is axdab le  at 
u ~ v ~ \ ~ . s c i e n c e ~ n a g . o r g . f e a h ~ r e ~ d a t a ~ l ) .  
Finally, the issue of a quanh1111 Trojan liorse 
attack is addressed in (21). This co~npletes 
our proof of security of Qm. 

Discussion. An important idea behind our 
qualiturn to classical reductio~i is that a quantum 
meclianical expe~i~nent has a classical inrelyre- 
tation whenel-er obsenlables that refer to only 
one basis (tlie S-Bell basis in our case) are 
considered. The fine-grained nieasurenient op- 
erators by Alice and Bob along the three ran- 
don1 bases do no: conunute with the Bell-basis 
projection operators. However. Alice and Bob 
base their decision on whether to accept the 
alleged singlets not 011 tliose fine-grained mea- 
surenlent results but on the coarse-gained (par- 
allel or antiparallel) ones. Those coarse-gained 
operators all conunute with a coniplete von 
Neumann measurement along the Bell basis 
(35). 

Our quantum to classical reduction tech- 
nique is a powerfill tool of widespread applica- 
tions. It guarantees that one call apply standard 
results in the classical world (such as probabil- 
ity theory and statistics theo~y) to the original 
quantum problem without leading to fallacies. 
In effect. tliis nleans the extension of classical 
statistical theoly to quallhlm mechanics, result- 

error rates of the sampled photons. (These 
exanlples are discussed at ~v~~#~v.sciencemag. 
org!featuredata!984035.~hl.) 

The second example gives us a quantita- 
ti\-e statenlent on the trade-off between infor- 
mation gain and disturbance (39). This is a 
strong result to a ~iotoriously difficult prob- 
lem because (i)  the bound applies not merely 
to a strategy in which E\-e couples a probe to 
each signal particle but to any infonnation 
extraction strategy that is consistent with 
quantum mechanics and (ii) the bound can be 
deril-ed by a randoni sampling of a small 
subset. 111 other words; a concrete experimen- 
tal random-sampling procedure (rather than 
an abstract matlieniatical equation with little 
physical meaning) is presented here (40). 

Finally. let us return to QKD itself. Al- 
tliougli we ha\-e focused on the case when Alice 
and Bob receive allegedly good EPR pairs fiom 
Eve, our proof of security of QKD also applies 
to the case when Alice sends qubits (rather than 
halves of EPR pairs) to Bob. Consider the 
following situation. Alice prepares "I'EPR pairs 
in lier laboratory. She then chooses the subsets 
for parity detennination beforehand and per- 
forms all the computations and measurements 
on her 11al1-es of the :IT EPR pairs in lier oxvn 
laboratory before sending out the other halves 
to Bob. After Alice's nieasurernents, the sub- 
system that she sends to Bob is in a pure state: 
tliat is, qubits rather than halves of EPR pairs 
are sent to Bob. However. because Alice's op- 
eration is local. it must comniute with Eve's 
eavesdropping operator. Therefore. tliis qubit- 
based scheme niust be as secure as the original 
EPR-based scheme. (Just as in the EPR-based 
case, it is of the utniost importance for Alice to 
withhold information on the choice of subsets 
for the pality detennination until Bob acknowl- 
edges the receipt of quantum transmission. Oth- 
e m  lse. E\e  can cheat eas~ly ) 
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datal984035.shl). 
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33. Efficient quantum error correcting schemes exist 
for reducing the error rate t o  an exponentially 
small amount (see discussion, available a t  www. 
sciencemag.orglfeatureldatal984035.shl). 

34. Such an " ( N  - m)-singlets-or-not" measurement 
can be performed if Alice and Bob bring the t w o  
halves of each EPR pair together t o  perform a measure- 
ment along a Bell basis. This is a very subtle point 
because such a Bell measurement is not actually per- 
formed and, indeed, could not be performed without 
bringing the two halves together. Successful cheating 
thus means that the actual verification test is passed, 
but a hypothetical second test of bringing the remaining 
pairs back into the same laboratory and measuring 
them in a Bell basis would fail (that is, some of the 
remaining N - m pairs are shown to be nonsinglets 
upon Bell measurements). 

35. This is a surprising result because Bell basis vectors are 
highly entangled and yet only local operations and 
classical communication are allowed here. The local 
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eavesdropping strategy that passes the verification 
test wi th a probability of at least 2-' for some 
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N - m pairs must be singlets. Instead of computing 
the fidelity for the remaining N - m pairs t o  be N - 
m singlets, let us compute the fidelity for the original 
N pairs t o  be N singlets. This wil l  give us a good 
enough bound on the fidelity. With any cheating 
strategy against the quantum verification scheme by 
Eve, let p ,  be the tota l  probability for the state of the 
N pairs t o  be N singlets under the measurement 
along the Bell basis. The case of N singlets, which 
happens wi th a probability p,, wil l  automatically pass 
the verification test. This case is perfectly fine and 
secure. What about the other case? Upon a random- 
hashing verification scheme that sacrifices m pairs, 
the other case (which happens wi th probability 1 - 
p,) wil l  pass an m-round random-hashing verification 
test wi th a conditional probability of, at most. 2-". 
Therefore, the probability that a strategy passes the 
verification test is given by 

Eve would be most interested in a cheating strategy 
that passes the test wi th a nonnegligible probability 
(say at least 2-', where we assume that 0 < r 4 m)  
Therefore, we demand that the probability 

Conditional on passing the verification test, the fidel- 
i ty  of the N pairs as singlets is given by 

where Eq. 7 and the fact that p,l@, - 2 - 9  is an 
increasing function o fp ,  have been used. By choosing 
a value of m that is substantially larger than r, the 
conditional fidelity can be made very close t o  1. 
Therefore, given any parameter r, one can increase 
the conditional fidelity in Eq. 8 by increasing the 
number m of random parities computed. In summary, 
consider any eavesdropping strategy that passes an 
m-round random-hashing verification scheme wi th a 
probability of at least 2-' (where m D r > 0 From 
Eq. 8, upon passing the test, the conditional fidelity of 
the N pairs as N singlets is at least 1 - 2-(m-r). From 
(28), this implies that Eve's information is exponen- 
tially small in m - r, more precisely, 2-' + 
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dence of traps ( 1 2 ) ,  have been proposed as 

The Effect of Spin Splitting on 
the Metallic Behavior of a 
Two-Dimensional System 

Experiments on a constant-density two-dimensional hole system in a gallium 
arsenide quantum well revealed that the metallic behavior observed in the 
zero-magnetic-field temperature dependence of the resistivity depends on the 
symmetry of the confinement potential and the resulting spin splitting of the 
valence band. 

For many years, it was accepted that there could 
be no metallic phase in a disordered two-di- 
mensional ( 2 D )  canier system. This was due to 
the scaling arguments of Abrahams et al. ( 1 )  
and the support of subsequent experiments (2) .  
In the past few years, however, experiments on 
high-quality 2D systems have provided us with 
reason to revisit the question of whether or not 
a metallic phase in a 2D system can exist (3-9). 
Early temperature-dependence data from high- 
mobility Si metal oxide semiconductor field- 
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effect transistors (MOSFETs) showed a de- 
crease in resistivity as the temperature T was 
reduced below 2 K ( 3 )  This metallic behavior 
is the opposite of the expected insulating be- 
havior in which the resistivity should become 
infinite as T approaches zero In addition, the 
behavior was not only metallic in a certain 
electron density range but also scaled uith a 
single parameter as the density uas  reduced and 
as the sample became insulating, suggesting a 
true metal-to-insulator phase transition ( 3 )  

Since these experiments, the metallic be- 
havior has been observed in Si MOSFETS ( 3  
4) ,  SiGe quantum wells (5 6), GaAsIAlGaAs 
heterostructures ( 7  8 ) ,  and AlAs quantum 
wells ( 9 ) ,  demonstrating that there are still 
some unsolved puzzles in the fundamental 
nature of 2D carrier systems Multiple mech- 
anisms, including electron-electron interac- 
tion ( l o ) ,  spin splitting ( 11 ) ,  and T depen- 

causes of the metallic behavior, but no clear 
model that fully describes this sizeable body 
of experimental data has emerged. The exper- 
iments reported here add to our understand- 
ing by demonstrating a correlation between 
the zero-magnetic-field spin splitting and the 
metallic behavior. 

Spin splitting of carriers in a 2D system at 
a zero magnetic field occurs when there is 
spin-orbit interaction and an inversion asym- 
metry of the potential in which the carriers 
move ( 13 ) .  The energy bands are split into 
two spin subbands, which have different pop- 
ulations because their energies at any nonzero 
wave vector are slightly different. The 
existence of these spin subbands has been 
well established both experimentally and the- 
oretically (13-18). 

Our experiments were performed on high- 
mobility 2D hole systems in GaAs quantum 
wells (QWs), which were chosen because 
they have a large intercarrier separation < 
( 19 ) ,  they have already shown metallic be- 
havior ( 7 ,  8 ) ,  and they exhibit a large and 
tunable spin splitting ( 1  7 ) .  In GaAs, the spin 
splitting arises from the inversion asymme- 
tries of the zinc-blende crystal structure and 
of the potential used to confine the electrons 
to two dimensions. The asymmetry of the 
crystal structure is fixed, but the asymmetry 
of the confining potential, and therefore the 
spin splitting, can be changed by applying an 
E perpendicular to the 2D plane ( E L )  using 
gates ( 1  7 ) .  We found that the spin splitting 
can be tuned while the density is kept con- 
stant and that the metallic behavior of the 2D 
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