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Acoel Flatworms: Earliest 
Extant Bilaterian Metazoans, 

Not Members of Platyhelminthes 
liiaki Ruiz-Trillo,' Marta Riutort,' D. Timothy J. Littlewood,' 

Elisabeth A. ~erniou,'  Jaume ~aguiial*  

Because of their simple organization the Acoela have been considered to be 
either primitive bilaterians or descendants of coelomates through secondary 
loss of derived features. Sequence data of 185 ribosomal DNA genes from 
non-fast evolving species of acoels and other metazoans reveal that this group 
does not belong to the Platyhelminthes but represents the extant members of 
the earliest divergent Bilateria, an interpretation that is supported by recent 
studies on the embryonic cleavage pattern and nervous system of acoels. This 
study has implications for understanding the evolution of major body plans, and 
for perceptions of the Cambrian evolutionary explosion. 

"Siilce the first Metazoa were almost ceitai~lly 
radial animals; the Bilateria must have spi-ung 
from a radial ancestor, and there must have 
been an alteration from radial to bilateral sym- 
metry. This change coilstitutes a most difficult 
gap for phylogeneticists to bridge, and various 
highly speculative conjectures have been 
made" (I, p. 5). So began Libbie Hyman's 

discussio~l 011 the origin of bilaterian Metazoa, 
and despite a century of morphological studies 
and a decade of inte~lsive molecular work, the 
nature of the simplest bilateiian animal remains 
elusive ( I ,  2). Paleo~ltological and n~olecular 
data indicate that most bilaterian phyla ap- 
peared and diversified during the Cambrian 
explosion (3, 4). Three main clades emerged- 
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the Deuterostomia, the Ecdysozoa, and the Lo- 
photsochozoa (5). although their branching or- 

Table 1 .  List of species included in this study, GenBank accession numbers, and result of the relative rate 
test (rrt). The names of the 61 species finally selected for analysis are in bold. Ph., phylum; O., order; CI., 
class. der is uixesolved. The acoel flahvolms; tradi- 

tionally classified as an order of the Platyhel- 
minthes, are perhaps the simplest extant 
members of the Bilateria and have been viewed 
as either basal inetazoails that evolved from 
ciliate protozoans ("syncytial or ciliate-acoel 
theoiy") (6) or a direct link between diploblasts 
and tsiploblasts ("plailuloid-acoeloid theory") 
( I ,  7). However, the lack of coillplexity has also 
beell interpreted as a loss of derived feah~res of 
inore complex ancestors ("archicoelomate the- 
oiy") (8). 

The proposed metazoail phylogenetic trees 

r r t *  
Acc, number Taxa Species 

Deuterostomia 
Ph. Chordata Branchiostoma floridae 

Lampetra aepyptera 
Xenopus laevis 
Mus musculus 
Balanoglossus carnosus 
Saccoglossus kowalewskii 
Antedon serrata 
Ophioplocus japonicus 

Ph. Hemichordata 

Ph. Echinodermata 

Lophotrochozoa 
Ph. Mollusca 

that include acoels have shown them to branch 
after the diploblasts, indicating that they are Acanthopleura japonica 

Lepidochitona corrugata 
Argopecten irradians 
Chlamys islandica 
Nerita albiulla 
Limicolaria hambeul 
Eisenia foetida 
Enchytraeus sp. 
Hirudo medicinalis 
Haemopsis sanguisua 
Lanice conchilega 
Nereis virens 
Prostoma eilhardi 
Lineus sp. 
Phascolosoma granulatum 
Terebratalia transversa 
Lingula lingua 
Barentsia hildegardae 
Pedicellina cernua 
Plumatella repens 
Phoronis vancouverensis 
Ochetostoma erythrogrammom 
Ridgeia piscesae 
Siboglinum fiordicum 
Lepidodermella squammata 
Chaetonotus sp. 

considered primitive triploblastic animals ( Y -  
1 I). However, all 18s  ribosoinal DNAs 
(rDNAs) from acoels that ha\ e beell sequeilced 
so far show rates of ilucleotide substitution that 

Ph. Annelida are three to five times the rates of most other 
Metazoa (lo), resulting in the long-branch at- 
traction effect in which rapidly evolving taxa 
cluster and branch together artifactually at the 
deepest base of the trees (12). We exainined the 
relationship of the Acoela to other metazoan 
taxa by sequencing conlplete 185' rDNAs (I3) 
froin 18 acoel species (14). In addition, we 
sequenced the 185' rDNA of the catenulid S~lo- 
?i~i~zc~ sp. and the ileineitodeinlatid : \~~CIJ .C~ sp. as 
additional representatives of basal orders of 
Platyhelmintl~es thougl~t to be closely related to 
acoels. The 185' ribosoinal gene was chosen 

Ph. Nemertini 

Ph. Sipuncula 
Ph. Brachiopoda 

Ph. Entoprocta 
Ph. Bryozoa 

Ph. Phoronida 
Ph. Echiura 
Ph. Pogonophora 

because of the large number of sequences avail- 
able in the inolecular data banks (GenBank and 
European Molecular Biology Laboratory) for 
representatives of the entire animal kingdom. 

Ph. Castrotricha 

To avoid the long-branch effect, we broadly 
sainpled the Acoela to find species that have 
noilnal rates of ilucleotide substitution (11011- 

fast-clock species). As representatives of most 
the test Only one acoel species (Par~tonzelli~ 
?.~iDri~) passed the test, and one othei (SIIII~IICO- 

region (Fig. lB), indicating that the rDNA data 
contain a reasonably high degree of phyloge- 

animal phyla a wide range of inetazoan species 
were selected from the data banlcs (Table 1) and 

nzorpi~cl gigantor hahd1tl.s) came veiy close (Ta- 
ble 1) Although the latter was not included m 

iletic infoi~nation. 
We next built a tree using inaxiinum lilceli- 

hood (19). The best tsee that we found is shown 
in Fig. 2. In this tree, Deuterostomia, Ecdyso- 

their sequences aligned and compared with 
those of acoels (15). A preliminaiy phyloge- 

subsequent analyses reported here, veiy similar 
results were obtained when both species or a 
single one (Pa?atoi~lelln rlibrn) was used. Of 74 
bilaterian species tested (including the f o ~ r  

netic analysis (by the neighbor-joining method) 
showed that all 18 acoels folm a veiy clear 

zoa, and Lopl~otrocl~ozoa (5) foiln monophylet- 
ic groups. Interestii~gly. the acoeloinate and 

monopl~yletic group that branclles at the base of 
the triploblasts. As expected (lo), iilclusion of 

acoels). 57 passed the test. Subsequent analyses 
were performed with only these 57 species that 

pseudocoelon~ate groups cluster at the base of 
the Ecdysozoa and Lophotsochozoa. Most im- 
portantly, the tree shows the acoels as the first 
offshoot after the diploblasts. However, the 
neine~-toderi~~atids, an order of Platyhelminthes 
usually classified as the sister group of the 
Acoela and foinling the Acoelomorpha (20, 
21), and here represented by the single species 
that passed the relative rate test, gsoup within 
the bullc of the Platyhelmintl~es rather than with 
the acoels. On the other hand, both catenulids 
cluster at the base of the Platyhelminthes. All 
alternative hypotheses conceining the relation- 

the long-branch acoels leads to several incon- 
sistencies in tsee topology. Therefore; to select 
those taxa with unifoim rates of change, we first 
perfoillled a relative rate test (1 6) compaiing all 
the species by pairs with the diploblast species 
as reference taxa. Because extremely long 
branches characterize inost acoel species, only 

demonstsated unifonn and comparable rates of 
evolution (representing 21 phyla) plus the fom 
diploblasts representing three phyla. The sec- 
ond step in the analysis was to dete~mine the 
phylogenetic content of the data resulting from 
this selection. Two tests were cairied out. A 
plot of the obseived (total, tsansitions or trans- 

the four with shortest branches were included in versions) lessus inferted number of substihl- 
tions (4, 17) showed that, although the cuives 
tend to level off (Fig 1A). they do not reach a 
plateau, meaning that the sequences studied are 'Departament de Genetics, Facultat de Biologia, Uni- 

versitat de Barcelona, Diagonal 645, 08028 Barcelona, 
Spain. 'Department of Zoology, The Natural History 
Museum, Cromwell Road, London SW7 5BD. UK. 

only moderately nlutationally saturated. From a 
lil<elihood-mapping analysis (18) 8 1.5% of 
quartets had resolved phylogenies and only 
10.7% of all quartet points were in the star-tree 

ships behveen acoels and other platyhelminths 
(20, 22-24) and their position within the Bila- 
teria (10) were also conipared by the Kishino- 
Hasegawa test and all were significantly poorer 

*To whom correspondence should be addressed. E- 
mail. bagunya@porthos.bio.ub.es 
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Table 1 .  Continued 

rrt* 
Taxa Species Acc. number 

Lophotrochozoa (continued) 
Ph. Platyhelminthes 

0. Acoelaf 

0 .  Tricladida 
0 .  Polycladida 
0 .  Lecithoepitheliata 
0 .  Macrostomida 

0 .  Proseriata 
0 .  Nernertoderrnatida 

0. Catenulida 

Cl. Cestoda 
Cl. Trematoda 

C I  Monogenea 
Ecdysozoa 

Ph. Tardigrada 
Ph. Arthropoda 

Ph. Priapulida 
Ph. Kinorhyncha 
Ph. Nematomorpha 
Ph. Nematoda 

Other phyla 
Ph. Chaetognatha 
Ph. Mesozoa 

Ph. Gnathostomulida 
Ph. Rotifera 

Ph. Acanthocephala 

Diploblasts 
Ph. Placozoa 
Ph. Porifera 
Ph. Cnidaria 

Paratomella rubrat 
Simplicomorpha gigantorhabditist 
Symsagittifera psammophila: 
Haplogonaria syltensis1 
Polycelis nigra 
Discocelis tigrina 
Ceocentrophora sp. 
Macrostomum tuba 
Microstomum lineare 
Monocelis lineata 
Nemertinoides elongatus 
Meara sp.: 
Stenostomum leucops 
Suomina sp.1 
Crillotia erinaceus 
Schistosoma mansoni 
Fasciolopsis bushi 
Neomicrocotyle pacifica 

Macrobiotus hufelandi 
Odiellus troguloides 
Aphonopelma sp. 
Berndtia purpurea 
Panulirus argus 
Tenebrio molitor 
Polistes dominulus 
Scolopendra cingulata 
Priapulus caudatus 
Pycnophyes hielensis 
Cordius aquaticus 
Trichinella spiralis 
Plectus sp. 
Zeldia punctata 

Paraspadella gotoi 
Dicyema sp. 
Rhopalura ophiocomae 
Gnathostomula paradoxa 
Philodina acuticornis 
Brachionus plicatilis 
Moliniformis moliniformis 
Neoechynorhynchus pseudemydis 

Trichoplax adhaerens 
Scypha ciliata 
Anemonia sulcata 
Tripedalia cystophora 

'Figures indicate the number of cases in which the rate of nucleotide substitutions of each species was significantly 
different (at 5% and at 1% levels) when compared by pairs with a set of 45 species with a uniform rate of substitution. 
Diploblasts Served as reference species. For further details, see (16). The complete matrix with a l l  the comparisons is 
available at ftp:llporthos.bio.ub.es/publincominglphylogenylrrtxls t A  total of 18 species of acoels were sequenced, 
though only the four earliest branching taxa within that group were used in the metazoan-wide analysis. For the rest 
of acoel sequences, see (14). tNew sequences reported in this paper. 

than the phylogeny obtained originally. The 
robustness of the intelnal branch separating 
acoels fiom the rest of bilaterians was fi~rther 
evaluated by the four-cluster likelihood map- 
ping method (25) and resulted in 100% support 
for this branch. 

Because the position of the acoels might be 
due to the most variable sites of the alignment, 
nre removed them fro111 the whole data set (26); 
the acoels still appeared at the base of the trees, 
although the phylogenetic signal within the trip- 

loblasts almost faded away. Alternatively, the 
sequence regions that show the highest varia- 
tion among acoels might represent noisy data 
that separate them from the rest of the Bilateria. 
To test this idea, we aligned the 18 acoel se- 
quences, found their inost valiable positions, 
and removed the latter fr.0111 the 61-species 
alig~lrnent (27). Again, this resulted in the 
acoels on a shorter branch at the base of the 
bilaterian tree (the thee  trees obtained in both 
tests are available as suppleinentaiy inaterial at 

Frequency of estimated substitutions (ML) 

Fig. 1. Phylogenetic content of the data. (A) 
Substitution saturation curve. The y axis shows 
the frequency of  observed differences between 
pairs of  species sequences determined wi th  MUST 
(4, 17), and the x axis shows the inferred distance 
between the same t w o  sequences determined by 
maximum likelihood (ML) wi th  PUZZLE v. 4.0 
(38). Each dot  thus defines the observed com- 
pared wi th  the inferred number o f  substitutions 
for a given pair o f  sequences. The resulting curve 
lies between the diagonal line (no saturation) and 
a horizontal plateau line (full saturation), which 
means that the data set is only moderately sat- 
urated [for further information see (4, 77)) (B) 
Likelihood mapping analysis (78) of  the data set, 
represented as a triangle. Values at  the corners 
indicate the percentages of  well-resolved phylog- 
enies for all possible quartets (18), and values at  
the central and lateral regions are percentages of  
unresolved phylogenies. The cumulatively high 
percentage (81.5%) from the corner values indi- 
cates the data set is phylogenetically informative. 

~~~~~v.sc iencei11ag.org!feature idata i9861) .  
Finally, because some iinportant phyla such as 
Cl~aetognatha, Acanthocephala, Gnathostoinu- 
lida, Mesozoa, and Neinatoda did not pass the 
relative rate test and were not included in the 
maximum-lil<elihood analyses, the four-cluster 
likelihood mapping was used again to test the 
position of these groups against acoels and the 
rest of the tiiploblasts. In all cases. acoels and 
diploblasts cluster together (Table 2). Imnpor- 
tantly. of all the phyla tested, some of those 
previously proposed as "priinitive" bilaterians 
(Mesozoa, Nematoda, and Gnathoston~ulida), 
always cluster with the triploblasts. 

Our analyses clearly indicate that acoels are 
not llleinbers of the phylu~n Platyhelminthes, 
but occupy a key position in the Metazoan tree 
of life, inost likely as the earliest branch within 
the bilateiian clade that left extant descendants. 
The monophyly of Platyl~elminthes has been 
criticized (23. 28, 29) because of the weakness 
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Table 2. Four-cluster likelihood mappings to test acoel position against fast-clock phyla. Four-cluster parsimonious to assume that the first bilaterian 
likelihood mappings (18) were performed arranging species into three groups: diploblasts (D), acoels (A), also had radial clea\iage (32).  hi^ evidence 
triploblasts (T), and a fourth group ( X )  taken from each of the phyla t o  be tested. If the phylum under supports our proposed pllylogenetic tree in 
test is more basal than the acoels, i t  should cluster with high support with the diploblasts. Conversely, 
if acoels are more basal the phylum under test should cluster with the triploblasts. Results show that branch before Cambrian 

acoels cluster more closely t o  the diploblasts than all other triploblasts. radiation from unknown bilaterian ancestors 
with radial cleavage and suggests that duet 

Bifurcating tree cleavage and quartet spiral cleavage arose in- 
Fast-clock phyla Intermediate star dependently from an ancestral radial pattern. 

(X) it-<: ?Hi ;ti: 
regions tree The structure of the nervous system also indi- 

cates that the acoels are not related to the other 

Acanthocephala 98.2% 0% 0% 1.8% 0 % 
Chaetognatha 98.7% 0 % 0% 1.3% 0 % 
Cnathostomulida 75.4% 15.2% 0% 9.4% 0% 
Mesozoa 93.1 % 0% 0% 5.1% 1.8% 
Nematoda 99.7% 0 % 0% 0.3% 0% 

of the synapomorphies on which it is based (22, 
24): multiciliation of epidennal cells, the bicili- 
ary condition of the protonephridia, and the lack 
of mitosis in somatic cells. In contrast, the 
Acoela have a characteristic set of well-defined 
apomosphies: a network of ciliary roots of epi- 
dermal cells, tips of the cilia with a distinct step, 
lack of extracellular matrix, absence of proto- 
nephridia, and, most importantly, the duet spiral 
cleavage. The first three features are usually 
considered to be derived (22, 24); the 18s mo- 
lecular data, however, suggest a different inter- 
pretation for the other two. The lack of proto- 
nephridia in acoels may be a plesiomorphic 

Fig. 2. Diagrammatic rep- 
resentation of the best CVO 31DATA 

185 rDNA-based maxi- G 1 DEUTEROSTOMIA 

feahlre (29). The Acoela exhibit duet spiral 
cleavage, in contrast to the quartet pattern that 
characterizes the Spiralia and some turbellarian 
Platyhelminthes. However, acoel cleavage is 
actually more bilateral than spiral (30), suggest- 
ing that duet cleavage and typical quartet cleav- 
age are not related. Moreover, all spiralian em- 
bryos have both ecto- and endomesoderm and 
exhibit determinative development, whereas 
acoel embryos generate only endomesoderm 
(30) and are highly regulative (31); the latter 
two features are considered to be ancestral. 
Most diploblastic and several tliploblastic phyla 
exhibit a radial cleavage pattern; thus, it is more 

mum-likelihood tree of 61 
metazoan species (bold 

platyhelminths. Most Platyhelminthes have a 
bilobed brain with neuropile surrounded by 

VEMICHO9DATA 

ECHNODERMATA 

nerve cells and two main longitudinal nerve 
cords with colnmisures making an orthogon 
(33). In contrast, the nervous system of acoels 
comprises a simple brain fonned by clusters of 

names are in Table 1) with 
homogeneous rates of nu- 
cleotide substitution. The 
final matrix included 1181 
sites (584 variable and 
383 informative under RESTOFTHE 

parsimony); log In = 
100 

11,862. The number 100 
on the branch separating LOPHOTROCHOZOA 

acoels from the rest of 
triploblasts represents the 
percentage of support t o  
that branch obtained by 
the four-cluster likelihood 
mapping (25). The tree 
was obtained with fast 
DNAml (79). It  illustrates a G~~~~~~~~~~ 

nerve cells that lack a nenropile, and a variable 
number of longitudinal nerve cords that do not 

the relationships of the 
Acoela (bold, upper case) 
and the rest of the Platy- 

make an orthogon (34). 
The 1 SS rDNA sequences, emblyonic 

NEMATOh.409PVA 

ART+ 90  W D A  

cleavage patterns and mesodermal origins (30), 
and nervous system structure data (34) support 
the position of the Acoela as the earliest branch- 
ing Bilateria (Fig. 2) and the polyphyly of the 
Platyhelminthes. This argues for an extended 
period before the Cambrian within which dif- 
ferent bilaterian lineages may have originated, 

I ECDYSOZOA 

helminthes (bold, lower 
case) Metazoa. t o  the The rest general of the to- L-;;:~;;NcHA P9APULIDA 

pology of the tree defines 
three main bilaterian phy- DPLOBLASVCA 

logenetic groups: Deuter- o 10 

ostomia, Lophotrochozoa 
(including Platyhelminthes and Gastrotricha as basal phyla), and Ecdysozoa (with Priapulida and 
Kinorhynchia as basal phyla). The position of the Acoela renders the Platyhelminthes polyphyletic, 
whereas the Nemertodermatida (underlined) appears buried within the bulk of Platyhelminthes. For 
taxa and species names, see Table 1, the complete tree wi th all the species names is available in the 
supplementary material at www.sciencemag.org/feature/data/986597.shl 

with the acoels being the descendants of one of 
these lineages. This interpretation is supported 
by recent data on protein sequence dikergence 
(35). Direct development, which characterizes 
all extant acoels, as opposed to the biphasic life 
cycle with a larval stage and a benthic adult 
(36),  probably represents the ancestral bilat- 
erian condition [see (37), for a recent discus- 
sion]. Our findings suggest that the Acoela (or 
Acoelomorpha if the Nemertodennatida are 
shown to remain as their sister group) should be 
placed in their own phylum. 
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Rapid Dendritic Morphogenesis 
in CAI Hippocampal Dendrites 
Induced by Synaptic Activity 

M. Maletic-Savatic, R. Malinow, K. Svoboda 

Activity shapes the structure of neurons and their circuits. Two-photon imaging 
of CAI neurons expressing enhanced green fluorescent protein in developing 
hippocampal slices from rat brains was used to  characterize dendritic mor- 
phogenesis in response to synaptic activity. High-frequency focal synaptic 
stimulation induced a period (longer than 30 minutes) of enhanced growth of 
small filopodia-like protrusions (typically less than 5 micrometers long). Syn- 
aptically evoked growth was long-lasting and localized to dendritic regions close 
(less than 50 micrometers) to the stimulating electrode and was prevented by 
blockade of N-methyl-D-aspartate receptors. Thus, synaptic activation can 
produce rapid input-specific changes in dendritic structure. Such persistent 
structural changes could contribute to  the development of neural circuitry. 

Coordinated patterns of activity help to orga- ceptor-dependent processes. which suggests 
nize neural circuits throughout the brain (1) .  that synapse-specific associative changes are 
In particular; activity shapes the structure of involved. Relatively little is known about the 
sensory maps (2) and individual neurons (3) role of activity in the development of dendrit- 
through iV-methyl-D-aspartate (NMDA) re- ic molphology. A number of studies have ad- 

dressed \vhether long-term potentiation (LTP) 
Cold Spring Harbor Laboratory, Cold Spring Harbor, prod~lces posts~llaptic smchlral changes. Us- 
NY 1 1  724, USA. ing elecEon microscopy (EM) analysis of fixed 
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