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Structural maturation of fiber tracts in the human brain, including an increase 
in the diameter and myelination of axons, may play a role in cognitive devel- 
opment during childhood and adolescence. A computational analysis of struc- 
tural magnetic resonance images obtained in 11 1 children and adolescents revealed 
age-related increases in white matter density in fiber tracts constituting pu- 
tative corticospinal and frontotemporal pathways. The maturation of the cor- 
ticospinal tract was bilateral, whereas that of the frontotemporal pathway was 
found predominantly in the left (speech-dominant) hemisphere. These findings 
provide evidence for a gradual maturation, during late childhood and adoles- 
cence, of fiber pathways presumably supporting motor and speech functions. 

Structural maturatio~l of individual brain re- 
gions and their connecting pathways is a 
condition sine q ~ l u  non for the successful 
developnlent of cognitive. motor, and sensory 
functions. The smooth flow of neural impuls- 
es throughout the brain allows for informa- 
tion to be integrated across the many spatially 
segregated brain regions involved in these 
functions. The speed of neural transmissio~l 
depends not only on the synapse, but also on 
st~uctural properties of the connecting fibers; 
including the axon diameter and the thickness 
of the insulating myelin sheath (1). Axons 
constihitillg major fiber pathways in the hu- 
man brain, such as those of the co~pus callo- 
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sum or the co~ticospinal tract, continue to 
develop throughout childhood and adoles- 
cence. Postmortem studies suggest that axon 
diameter and myelin sheath undergo conspic- 
uous growth during the first 2 years of life, 
but may not be fully mature before adoles- 
cence (2) or even late adulthood (3). Howell- 
er, the scarcity of brain specimens makes it 
difficult to draw definite conclusions about 
the timetable of myelinatio~l during child- 
hood and adolescence. In vivo studies with 
magnetic resonance imaging (MRI) therefore 
play a major role in filling this gap. Previous 
developmental MRI studies have provided 
evidence for a continuous increase in the 
overall volume of white matter and the area 
of the co~pus  callosum well into adolesce~lce 
(41, but the analytic procedures used in these 
studies did not allow the investigators to de- 
tect changes in specific corticoco~tical or cor- 
ticofugal white matter pathways. Here, we 
report findings obtained with a technique for 
computational analysis of age-related chang- 
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es in local white matter signal throughout the 
brain. Similar techniques have been used in 
adults to detect subtle regional differences in 
gray matter signal between healthy subjects 
and patients with psychiatric or neurological 
disorders (5, 6). 

We obtained brain MRI scans of 11 1 chil- 
dren and adolescents aged 4 to 17 years (7).  
The images were then processed in a fully 
automatic system that included the follo\ving 
steps: (i) nonlinear transformation of images 
into standardized stereotactic space to re- 
move global and local differences in the size 
and shape of the individual brains; (ii) clas- 
sification of brain tissue into white matter, 
gray matter, and cerebrospinal fluid; and (iii) 
blurring of white matter binary masks to gen- 
erate three-dimensional (3D) maps of white 
matter "density" (8). Using a linear regres- 
sion model, we correlated the 11 1 individual 
maps of ~vhite matter density with the sub- 
ject's age on a voxel-by-voxel basis (9). 

Regression analysis revealed significant 
( t  > 5.0, P < 0.04, corrected) age-related 
increases in white matter density within the 
left ( t  = 8.9, i. = 0.65) and right ( t  = 8.0; 1. = 

0.60) internal capsule (Fig. 1) and the poste- 
rior portion of the left arcuate fasciculus ( I  = 

6.6; 1. = 0.54; Fig. 2). The location of the 
changes in the posterior limb of the inter~lal 
capsule suggested that the changes in\~ol\~ed 
the co~ticospinal and, possibly, thalamocorti- 
cal tracts. Changes in white matter density 
within the internal capsule were small but 
consistent; increasing li~learly from age 4 to 
age 17 by about two standard deviations (Fig. 
3). The arcuate fasciculus contains fibers con- 
necting frontal and temporal cortical regions 
involved in speech. It is therefore noteworthy 
that age-related white matter increases in this 
pathway reached significance only in the left 
but not the right hemisphere; the left hemi- 
sphere can be assumed to be dominant for 
speech in the majority of our right-handed 
subjects (10). The mean white matter density 
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was significantly higher in the left than in the 
right arcuate fasciculus (paired t test, t = 2.3, 
P < 0.05), whereas the variance of age- 
related changes was lower in the left hemi- 
sphere (Fig. 3). In addition to MRI scans, we 
have also collected several indicators of lan- 
guage skills, including the Vocabulary sub- 
scale of the Wechsler Intelligence Scale for 
Children-Revised (WISC-R) and the Tests of 
Achievement from the Woodcock-Johnson 
Psycho-Educational Battery. We carried out 
multiple regression analyses of these data 
and, after removing the effect of age, found 
no significant relations between any of these 
behavioral measures and white matter densi- 
ties in the arcuate fasciculus (1 1). 

The impressive consistency of the age- 
related changes found at the level of the 
internal capsule may be attributable to a rel- 
atively high density of fibers funneled 
through the narrow space between the thala- 
mus and the globus pallidus and, in turn, a 
high signal-to-noise ratio. It should be point- 
ed out, however, that similar albeit less robust 
age-related increases in white matter density 
were detected at different levels along the 
putative corticospinal tract (Figs. 1 and 4). 

The observed changes in white matter 
density in the internal capsule and the left 
arcuate fasciculus may reflect age-related in- 
creases in the diameter or myelination of the 
axons forming these fiber tracts. It has been 
suggested that the diameter of the thickest 
fibers in the corticospinal tract increases lin- 

early as a function of body height (12). Sig- 
nificant shortening of the central conduction 
time during childhood and adolescence has 
been observed in the motor pathway of both 
human and nonhuman primates (13).  These 
observations, as well as our findings, are thus 
consistent with the relatively protracted de- 
velopment of motor skills believed to be de- 
pendent on the corticospinal system, namely 
those requiring fine finger movements (14). 
Faster conduction velocity can facilitate in- 
formation flow not only by speeding it up but 
also by allowing for precise temporal coding 
of high-frequency bursts of neuronal activity 
(15). It has been proposed that processing of 
speech sounds requires a neural system capa- 
ble of tracking rapid changes in acoustic in- 
put (16). Rapid transfer of information to the 
auditory cortex and beyond would require 
fast-conducting fiber systems. A recent ob- 
servation by Penhune et al. (I 7) of larger left 
than right white matter volume in Heschl's 
gyms in the adult human brain is consistent 
with this notion. Moore et al. (18) examined 
brain specimens of children aged 5 to 11 
years and observed gradual maturation of 
axons originating in the superficial layers of 
the auditory cortex; these axons may contrib- 
ute to corticocortical connections contained 
in the arcuate fasciculus. 

Thus, the age-related increases in white 
matter density along the arcuate fasciculus 
observed here may represent a structural cor- 
relate of another component of the audiovo- 

cal system, namely the corticocortical path- 
way mediating sensory-motor interactions 
between the anterior and posterior speech 
regions. The interruption of the arcuate fas- 
ciculus in adulthood causes conduction apha- 
sia, perhaps as a result of the disruption of 
both feedforward and feedback mechanisms 
(19). The importance of the feedback mech- 
anism is also shown by the presence of sig- 
nificant modulation of neuronal activity in 
the human and monkey auditory cortex dur- 
ing speech and vocalization, respectively 
(20). The engagement of such feedback 
mechanisms may facilitate late stages of 
speech development, requiring a fast bidirec- 

Fig. 1. Age-related changes in white matter density in the internal capsule. The thresholded maps 
of t-statistic values (t > 4.0) are superimposed on axial sections through the magnetic resonance 
(MR) image of a single subject. The images depict the exact locations in the internal capsule that 
showed statistically significant correlations between white matter density and the subject's age. 
The red outline identifies the left internal capsule; its location was derived by registering the MR 
image with the appropriate sections of the Schaltenbrand and Wahren atlas (27). All images are 
aligned within the standardized stereotactic space, with the Z values indicating the distance (in 
millimeters) of a given axial section from the horizontal plane passing through the anterior and 
posterior commissures. 

Fig. 2. Age-related changes in white matter 
density in the left arcuate fasciculus. The 
thresholded maps of t-statistic values (t > 4.0) 
are superimposed on the sagittal (A) and coro- 
nal (B) sections through the MR image of a 
single subject. The images depict the locations 
along the putative arcuate fasciculus that 
showed statistically significant correlations be- 
tween white matter density and the subject's 
age. The t-maps are aligned with the MR image 
within the standardized stereotactic space, 
with the X and Y values indicating the distance 
(in millimeters) from the midline (sagittal sec- 
tion) and the anterior commissure (coronal sec- 
tion), respectively. The dotted line in (A) indi- 
cates the level at which the coronal section 
displayed in (B) was taken and similarly for the 
dotted line in (B) for the sagittal section dis- 
played in (A). 
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tional transfer of information between the 
auditory and motor cortical regions. It is also 
possible that the age-related increases in 
white matter density, both along the arcuate 
fasciculus and the putative corticospinal tract, 
reflect the effect of extensive use of these 
systems during the individual's life. 

Our findings provide evidence for the pro- 
tracted structural maturation of fiber path- 
ways, which support motor and speech func- 
tions, during childhood and adolescence. 
Age-related changes in white matter density 
observed along these pathways may reflect 

Left internal capsule 
1 

Right internal capsule 
1 

Left arcuate fasciculus 
1-1 

Rlght arcuate tasclculus 

0.2 I I 
4 5 6 7 8 9 10 1 1  12  13  14 15 16 17 
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Fig. 3. Values of white matter density in inter- 
nal capsule and arcuate fasciculus. The plots 
show means and SDs of white matter density 
values calculated for each age group. The val- 
ues were extracted from the individual blurred 
white matter images at the X, Y, and Z locations 
corresponding to the voxel with the highest t 
value in a given region, namely in the left 
internal capsule (X = -17, Y = -12, Z = 0; t = 
8.9, r = 0.65), right internal capsule (X = 15, 
Y = -4, Z = 4; t = 8.0, r = 0.60), left arcuate 
fasciculus (X = -43, Y = -32, Z = 26; t = 6.6, 
r = 0.54) and right arcuate fasciculus (X = 40, 
Y = -25, Z = 23; t = 4.5, r = 0.4). Numbers of 
subjects in each age group: 4 years, n = 7; 5 
years, n = 10; 6 years, n = 3; 7 years, n = 5; 8 
years, n = 12; 9 years, n = 10: 10 years, n = 7; 
11 years, n = 11; 12 years, n = 7; 13 years, n = 
10; 14 years, n = 10; 15 years, n = 8; 16 years, 
n = 7; and 17 years, n = 4. 

increases in axon diameter, myelination, or neural transmission. This could be achieved, 
concentration of iron, separately or in com- for example, by combining transcranial mag- 
bination (21). Further studies are required to netic stimulation and multichannel electroen- 
provide a link between the observed MRI- cephalography (22). Our findings may also 
derived structural changes and the speed of provide guidance for future investigations of 

neurodevelopmental disorders such as 
schizophrenia; the abnormal rate of myelina- 

A tion during childhood or adolescence may 

I very well underlie the emergence of psychot- 
ic syrnptomatology (23). Overall, the demon- -- . 

str~edpossibility of detecting subtle structur- 
al variations in white matter in the living 
human brain opens up new avenues of re- 
search on normal and abnormal cognitive 
development and the evaluation of long-term 
effects of various treatment strategies. 
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The shoot apical meristem (SAM) is the 
source of all the aerial parts of the plant. Cells 
at the SAM summit serve as stem cells that 
divide slowly to continuously displace 
daughter cells to the surrounding peripheral 
region, where they are incorporated into dif­
ferentiating leaf or flower primordia (1). A 
balance between creation of new meristem-
atic cells by division and departure of cells 
from the meristem by differentiation is re­
quired to maintain a functional SAM. The 
CLV3 and CLV1 genes play critical roles in 
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maintaining this balance, because loss-of-
function mutations in either gene cause pro­
gressive SAM enlargement and floral meri­
stem overgrowth (2-6). The phenotypes of 
representative wild-type and clv3 mutant 
plants (7) are shown in Fig. 1. CLV1 encodes 
a leucine-rich repeat (LRR) transmembrane 
receptor serine-threonine kinase (8). LRRs 
are a common motif of protein-binding do­
mains (9), suggesting that CLV1 may bind an 
extracellular protein or peptide ligand. clvl 
clv3 double-mutant analysis shows that the 
genes are mutually epistatic (5), suggesting 
that the two gene products act in the same 
pathway. Doubly heterozygous (c/W/+; clv3/ 
+) plants have a civ mutant phenotype (5), 
implying that the gene products have a quan­
titative interdependence, as if they acted to­
gether in a complex or in closely associated 
steps of a pathway. Thus, it appears that 
CLV3 protein acts either in the intracellular 
pathway leading from CLV1 activation to 
cellular activity, or in the production of, or as, 
the CLV1 ligand. 

Signaling of Cell Fate Decisions 
by CLAVATA3 in Arabidopsis 

Shoot Meristems 
Jennifer C. Fletcher,1 Ulrike Brand,2 

Mark P. Running,1* Rudiger Simon,2 Elliot M. Meyerowitznf 

In higher plants, organogenesis occurs continuously from self-renewing apical 
meristems. Arabidopsis thaliana plants with loss-of-function mutations in the 
CLAVATA (CLV1, 2, and 3) genes have enlarged meristems and generate extra 
floral organs. Genetic analysis indicates that CLV1, which encodes a receptor 
kinase, acts with CLV3 to control the balance between meristem cell prolifer­
ation and differentiation. CLV3 encodes a small, predicted extracellular protein. 
CLV3 acts nonautonomously in meristems and is expressed at the meristem 
surface overlying the CLV1 domain. These proteins may act as a ligand-receptor 
pair in a signal transduction pathway, coordinating growth between adjacent 
meristematic regions. 
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