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Dipping Low-Velocity Layer in
the Mid-Lower Mantle: Evidence
for Geochemical Heterogeneity

Satoshi Kaneshima'* and George Helffrich?

Data from western United States short-period seismic networks reveal a con-
version from an S to a P wave within a low seismic velocity layer (greater than
or equal to the 4 percent velocity difference compared to the surrounding
mantle) in the mid-lower mantle (1400 to 1600 kilometers deep) east of the
Mariana and lzu-Bonin subduction zones. The low-velocity layer (about 8 ki-
lometers thick) dips 30° to 40° southward and is at least 500 kilometers by 300
kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical
rather than a thermal origin. Ancient oceanic crust subducted into the lower
mantle is a plausible candidate for the low-velocity layer because of its broad

thin extent.

Planetary differentiation and convection cre-
ate heterogeneities in the mantle, which are
ultimately related to the cooling of Earth over
the age of the solar system. Seismically, these
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heterogeneities express themselves in veloc-
ity heterogeneity due to variations in temper-
ature, bulk composition, and phase changes

in
m

the mantle. In the upper mantle, all three
echanisms act, accounting for the greater

velocity variations there (+5%) in compari-
son to the lower mantle (£0.5%) (/). In the

lo
ni

wer mantle, it is not clear which mecha-
sms act, because the lower mantle seems

comparatively homogeneous except for the
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lowermost 200 to 300 km of the mantle (D")
and upper mantle slab extensions (2). We
used a seismic array—based technique to find
what are likely to be the more subtle lower
mantle heterogeneities, which should provide
information on Earth’s longer term evolution.

Evidence for seismic velocity anomalies
smaller than 500 km comes from the discrep-
ancy between shear-wave velocities, which
were derived from body waves and normal
mode studies (3), and from a recent study of
global stacking of core phase PKP precursors
(4), yielding statistical models of heterogene-
ity in the mantle but not their individual
positions. We refined the size, shape, and
velocity contrast of one previously recog-
nized heterogeneity in the mid-lower mantle
(5) by analyzing later arrivals after P waves
from intermediate to deep focus earthquakes
at the Mariana trench to the south of the
Izu-Bonin trench (Fig. 1).

The data are short-period seismograms
from western United States networks for in-
termediate (~200 km) to deep (~600 km)
earthquakes that occurred from 1993 to 1996.
The later arrival (indicated by arrows in Fig.
2 and called “later phase™ hereafter) for these
events shows a systematic focal depth-delay
time trend (Table 1). This result indicates that
the later phase was caused by the conversion
of an S wave to a P wave at a mid—lower
mantle velocity heterogeneity (5). We located
the source of the later phase for the five
events on the basis of maximizing the scat-
tering likelihood, which was computed with
the observed travel time 8¢, slowness dp, and
arrival azimuth 8¢ in relation to direct P
waves (Table 1) (6). The conversion points,
or scatterers, form a plane (500 km by 300
km) dipping ~30° southward (Fig. 1, inset,
and Table 1). The plane’s dip angle is con-
sistent with dips that were independently de-
termined, assuming that Snell’s law holds at
the wave conversion point across the inter-
face (Fig. 1, inset) (5). We conclude from this
mapping that the lower mantle heterogeneity
is a nearly planar interface extending at least
several hundred kilometers and that the later
phases are the S-to-P converted waves at this
dipping interface (Fig. 3A).

The stacked later phase waveforms differ
slightly from the direct P waveform stacks.

Table 1. Event list and conversion point locations

REPORTS

To model the interface’s properties, we com-
pared synthetic waveforms with the stacked
waveforms of the later phase (7) (Fig. 3B).
Two classes of interface models in which
elastic property discontinuously changes
across planar boundaries can explain the
waveforms (Fig. 3A). The first has a =8%
velocity increase from above the interface to
below (5). The other has a thin ~8-km-thick
layer of =4% lower velocity than the sur-
rounding mantle. This thin low-velocity layer
model gives systematically larger correlation
values by 0.05 to 0.1 than the first model for
almost all array-event pairs (Fig. 3C). The
synthetic waveforms for the second model
yield the subtle but characteristic downswing
onset of the later phase, which is not pro-
duced by the first model (Fig. 3B, arrows).
On this account, we favor the second, thin
low-velocity layer model for the source of

S-to-P converted waves in the mid-lower
mantle, which also requires a velocity heter-
ogeneity that is half that of the first model (8).

The relative amplitudes of the later phase
to direct P waves depend on its frequency
content. At higher frequencies, amplitudes
fall off above 0.25 Hz, whereas at lower
frequencies, they fall off below 0.15 Hz (5).
The lower frequency falloff is qualitatively
consistent with the model of a layer that is not
thick in comparison to the wavelength of
incoming waves (5 to 10 km). The estimated
velocity anomaly has a large uncertainty (at
least a factor of 2) because of the factors that
influence the observed amplitude ratios.
These factors include the attenuation struc-
ture of the mantle between the foci and the
conversion points and the relative radiation
intensity of the S wave to the direct P wave,
resulting from uncertainties in the focal

Fig. 1. Map of the study 40
area, showing earth-
quakes, S-to-P wave
conversion points, and
present and past trench
locations. Open dia-
monds indicate earth-
quake epicenters (Ta-
ble 1). Thick solid lines
represent the present
trench lines, and bro-
ken lines indicate the
reconstructed locations
of the Indonesia trench
during the Mesozoic
era (73). The trench mi-
grated southwestward
during the Mesozoic
era. Solid squares de-
note the S-to-P wave
conversion point loca-
tions. The ray paths
projected onto the hor-
izontal plane of a direct
P wave and of an S-
to-P converted wave
are shown with thin
solid lines. (Inset) A
cross section of the S-
to-P wave conversion

20°

\

S—

points along section 135°
A-B. Solid squares show
the locations of the con-

|
140

| T
145° 150 155°

version points, and solid bars represent dip angles of the conversion interfaces, which were
determined by applying Snell's law to the rays of incoming.S waves and converted P waves.

. Lat,, latitude; Long., longitude; deg., degree; mb, body-wave magnitude.

Event Date T'S:;.e’ Lf,fl" Lo::zg., Diﬁ:h’ mb 8t, s s /ZF;’% dse(g Lat., °N Long., °E Diﬁ:h' Likelihood
1 4/2/93 1432:19 1842 14522 501 52 1007 -020 3.0 2590+0.12 14899+0.18 16188 0.95+ 0.01
2 7/22/93 1215:36  21.76 144.26 127 56 1230 —-0.10 3.5 29.79 £ 0.06 148.42 £ 0.20 13816 0.84£0.01
3 4/8/95 1745:13  21.83 142,69 267 6.4 1077 —-020 40 29.06*0.10 14479*x022 1411£7 0.95=*0.03
4 7/6/96 2136:29 2197 142.83 241 58 1100 -020 3.5 29.00*0.12 14557 +021 1412*=8 0.95*0.02
5 7/15/96 1651:22  18.73 145.63 177 59 129.0 —025 40 27.05*0.13 149.06 £ 0.22 15657 095 0.03
6* 8/24/95 0155:35 18.90 145.05 588 6.0 886 —0.20 30 2562 *0.08 148.13 = 0.23 1596 =5 095 *0.02

*Representative hypocenter, conversion point location, and t, 8p, and 8¢ for the previously analyzed August 1995 earthquake sequence (5). The conversion points of all of the events

of the sequence are clustered within a small region (Fig. 1).
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mechanisms of the earthquakes (9). The shear
velocity anomaly of 4% is a lower bound
when we use lower attenuation and higher
estimates of S-wave radiation intensity (see
the caption of Fig. 3B). If we adopt the
preliminary  reference  Earth  model’s
(PREM’s) attenuation model (/0) or small
estimates of the radiation intensity or both,
the amount of the velocity anomaly can ex-
ceed 8%.

The geometry and properties of the heter-
ogeneity constrain possibilities for its origin.
A shear velocity heterogeneity (at least 4%
slower than the surrounding mantle) that is
this sharp probably cannot be solely due to
temperature, because a high-temperature
anomaly exceeding 500 K is required and.the
diffusive time scale for heat loss 7 for a
8-km-thick slab is only 2 million years (My)
(t=L/Dand D ~ 107° m? s~ !, where L
and D are the layer thickness and thermal
diffusivity, respectively). The dipping feature
of the object rejects a pressure-driven phase
transition (/7). Thus, it represents a chemi-
cally distinct region even if a thermal anom-
aly is also present. The heterogeneity’s shape
and thickness suggest oceanic crust that was
subducted into the lower mantle, with its
different bulk composition expressed as the
velocity contrast with the surrounding man-
tle. We assess the plausibility of the model in
the following. Slabs subducted during the
Cenozoic era do not have any relation with
this heterogeneity (/2) nor do recent tomo-
graphic models reveal velocity anomalies in
this region (2). On the other hand, a recon-
struction of paleosubduction zones indicates
that the Indonesia slab was located above the
heterogeneity with an age of 160 to 170
million years ago (Fig. 1) (/3). Velocities in
plausible subducted basaltic mineral assem-
blages in the mid-lower mantle vary by only
~1.5% in relation to pyrolite (/4), but the
shear modulus behavior at lower mantle con-
ditions is too uncertain to exclude a contrast
with subducted basalt. It is therefore uncer-
tain at this stage if the observed velocity
heterogeneity represents subducted oceanic
crust, but other Earth structures with this
thickness and lateral extent are difficult to
envisage.

If the. detected heterogeneity represents
the oceanic crustal part of a Mesozoic slab,
several consequences for mantle dynamics
and geochemistry follow. The heterogene-
ity’s residence time in the mantle is of the
order of 160 My. Its planar shape indicates
that buckling or folding of slabs is insignifi-
cant at scales smaller than 500 km. The dip of
the observed layer is opposite to the north-
ward dipping subduction of the Indonesia
slab predicted from plate reconstructions
(13), which may indicate that the slab lay
horizontally stagnant above the 660-km dis-
continuity before descending into the lower
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Fig. 2. Record sections of the vertical components of short-period seismograms. Seismograms are
bandpass filtered from 0.2 to 2 Hz. The horizontal axes are the delay times (in seconds) after the
onsets of direct P waves. The vertical axes are the epicentral distances in degrees. Event 3 in Table
1, recorded at the University of Washington Network (left). Event 6 in Table 1 (24 August 1995,
0628 UT ), recorded at the Northern California Earthquake Center Network (middle). Event 6 in
Table 1 (24 August 1995, 0155 UT), recorded at the University of Washington Network (right). The
isolated and impulsive phases denoted by arrows (not predicted by any standard Earth models) are

the later phases we studied.

mantle (/5). The near absence of western
Pacific hot spots (/6) might also be a conse-
quence of the same phenomenon if their rise
from the lower mantle is found to be blocked
by stagnant slabs such as this one. If the
characteristic plume rise time was 15 to 30
My (I7) and the slab remained there for at
least 160 My, it would effectively screen hot
spot rising and may become entrained in
plume ascent, a feature entailed in some geo-
chemical models (/8).

The reservoir dimensions suggested by
these observations constrain some models
of lower mantle geochemical heterogeneity
as well. A sheet of subducted oceanic crust
can deliver the 238U that is required for the
mantle’s high . (HIMU) (p = 233U/2%4Pb)
component. Uranium decay produces “He,
which if sequestered in an ~8-km-thick

layer, would be nearly closed to He diffu-
sion for the =1-billion-year time scale re-
quired to generate the observed 2°7/204pb—
206/204ph arrays in mid-ocean ridge basalt
(MORB) and oceanic island basalt (OIB)
(19, 20). Consequently, if these objects
were to be sampled during OIB genesis, say
by plumes, they would link a low *He/*He
component to HIMU. However, the gener-
ally 5to 7 R, (R,, atmospheric ratio) *He/
“He ratios of HIMU OIBs suggest segrega-
tion times of ~100 My (/9), which are
shorter than the ~160-My residence time
of the objects estimated above. One way to
break the link between HIMU and low
3He/*He is to postulate the diffusive loss of
He out of a thin HIMU source body that is
0.2 to 3 km thick (/9), thinner than the
sheet we observe. Alternatively, a thicker
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Fig. 3. (A) Schematic A
models of S to P~wave
conversion at the mid—
lower mantle heteroge-
neity. The conversion
occurs at an interface
(first-order discontinui-
ty), across which seis-
mic velocities increase
(top). The conversion
occurs at a thin low-
velocity layer (bottom).
The incident angle of
the incoming S wave is
20°. (B) Comparisons
between the observed
waveforms of the later
phase (solid lines) and
synthetics (22). These

Swa\}\
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layer that is 8 km thick.
Numbers at the right of
the linearly stacked

waveforms are the amplitudes of the later phase in relation
to direct P. Arrows indicate the downswing onsets of the
later phases. Radiation intensities were computed on the
basis of the Harvard Centroid Moment Tensor solutions,
allowing a 5° uncertainty of the nodal planes and taking the

Layer thickness (km)

o o

maximum possible values (9), which can be nearly four

times larger than the minimum values. Waveforms of the deeper and shallower events are both
consistent with the low-velocity thin-layer model. (C) Cross correlation between the observed and
synthetic waveforms with normalized amplitudes of synthetic waveforms averaged over deep events.
Broken line indicates cross correlations as a function of layer thickness for a low-velocity thin-layer
model. Cross correlation reaches a maximum at a thickness of 8 km, and the maximum for the velocity
increase at a single interface is shown with a open square at a layer thickness of 0 km. The dotted line
indicates the amplitudes of the S-to-P converted waves, which were normalized to the maximum that
was obtained for a thickness of 6 to 7 km. The closed circle at a thickness of 0 km represents the relative
amplitude for the single-interface model and t* represents the value of 3t* defined in (22).

body would require a lower internal *He/
“He ratio and mixing with the MORB res-
ervoir to attain the observed HIMU OIB
ratio. If the sheet is a relatively new feature
in the mantle, whose shape will be disrupt-
ed by future stirring, the diffusive model
may be compatible with the sheet’s thick-
ness. However, the strong elastic contrast
may plausibly be linked to an equally
strong rheological contrast, which would
inhibit further mixing. Thus, geochemical
heterogeneity longevity may be longer than
envisaged in mixing simulations in vis-
cously homogeneous fluids (20, 21).
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