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Tomographic imaging indicates that slabs of subducted lithosphere can sink 
deep into Earth's lower mantle. The view that convective flow is stratified at 
660-kilometer depth and preserves a relatively pristine lower mantle is there- 
fore not tenable. However, a range of geophysical evidence indicates that 
compositionally distinct, hence convectively isolated, mantle domains may 
exist in the bottom 1000 kilometers of the mantle. Survival of these domains, 
which are perhaps related t o  local iron enrichment and silicate-to-oxide trans- 
formations, implies that mantle convection is more complex than envisaged by 
conventional end-member f low models. 

Despite recent progress in tomographic iinag- 
ing (1-3) and nuinerical f lon modeling (4) 
iinpoi-tant aspects of convective stilling of 
Earth's lnaiitle have remained enign~atic. Anal- 
yses of trace elements and noble gas isotopes 
suggest that distinct mantle reservoirs haye sur- 
vived for a large part of Eai-th's 4.5 X lo9 year 
histoiy (5-7). In some con~ection inodels a 
resel~oir boundaiy at 660-km deptli separates a 
depleted upper from an eiuiclied lower mantle 
(5, 6). but coiiiputer silliulations de~nonstrate 
that such layering of flow requires radial vari- 
ations in intrinsic density and caru~ot be iiiain- 
tained on geological time scales by viscosity 
skatification and effects of isochelnical phase 
hallsitions alone (8) .  There is, ho\vever. no 
coinpelling evidence for a change in bulk 
chelnistiy at 660-km depth (9, lo) ,  and seismo- 
logical evidence implies that slabs of subducted 
oceanic litliospliere can sink deep into the loner 
inantle (2. 3). Resolving the dilei~una requires 
new views on isotope and inajor element rela- 
tionships (11) or on lolver-mantle processes. 
We explore the latter and propose that segrega- 
tion of mantle domains does occur but at much 
greater deptli than tlie base of the upper-mantle 
kansition zone. 

A recent tomographic sh~dy (2) revealed 
hvo depth intervals. fiom -400- to 1000-knl 
deptli and from - 1700- to 2300-l<m depth, 
where inferred liiantle structure seems too com- 
plex for uiidishirbed whole-mantle con~ection. 
This coinplexity is bome out by the radial cor- 
relation of mantle structure (12) (Fig. 1). The 
sl~allo~v iiiteival of reduced radial col.l.elation 
(Fig. 1) comprises the upper-mantle transition 
region in a broad sense (13. 14). Analog (15) 

and numerical (1 6 )  flon inodeling de~nonstrate 
that tlie complex flow trajectories revealed by 
seismic iinaging (1 7) may merely represent 
local and transient layering (18) of a c o n ~ e c t i ~ e  
system that is othel~vise characterized by deep, 
but not necessarily mantle-wide, circulation (2, 
3). The persistence of struch~ral complexity to 
near 1000-km deptli (Fig. 1) colvoborates pre- 
vious inferences (19-21) and is perhaps re- 
lated to the stability of Al-rich phases and 
silicate illiienite into the topmost lower man- 
tle (22). The base of tliis interval coincides 
with mid-mantle discontinuities as inferred 
froin converted seismic waves and mantle 
iinpedance profiles (23), but there is no con- 
sensus on either the global significance or the 
cause of these discontinuities, and it is not 
obvious if and how they are related to the 
complexity of inantle stmcture. 

Seismologically observed complexity in the 
lower mantle probably reaches a maximum in 
its hottoill 300 km, the D" region (24, 25). 
Howeyer, seyeral lilies of geophysical evidence 
suggest that structural and chemical heteroge- 
neity is not confined to tliis region but extends 
up to at least 1000 lun above the core-mantle 
boundary (CMB). High-resolution tomography 
has revealed a change in the spatial pattern of 
lieterogeneity in the middle of the lower mantle 
(2, 3). To inyestigate the deep mantle in more 
detail. we enhanced data coverage by including 
high-quality differential travel-time residuals 
fiom core-refracted (PKP) waves (26). The 
new images confilln that at 1700 i 200 k111 
depth, the linear features of liiglier-tlian-average 
P na~espeed  that are so prominent in the mid- 
mantle (Fig. 2A) begin to disintegrate (Fig. 2B), 
with only some fragineiits of them collnectiiig 
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The changes in the pattern or spectrum of 
heterogeneity do not, by themselves, require 
spatial variations in bulk chemistry. Slieetlike 
donnwellii~gs may break up \vhen they sink to 
larger depth in a spherical ~nediuin (28), and the 
bifurcated donnwellings spread out tvhen they 
approach Earth's dense core, which explains 
the shift to long-wavelengtl~ structure. Radial 
variations in viscosity (4, 29) can force this to 
happen at sliallower depths. Fui-tlierinore, seis- 
mic images are a "snapshot" of time-dependent 
processes (3), and the infell-ed change in the 
planfonil of mantle structure may be a transielit 
feature related to past plate reorganization. 
So~ne  of the slabs that are detected in the mid- 
inantle may not yet have reached 2000-km 
depth, whereas others may no loiiger be detect- 
able (2). The global extent of the disniption 
(Fig. 3) can be explained if, lvith the exception 
of the inost therinally inei-t downwellings-for 
example. beneath eastein Asia and central 
Ainerica (2, S t s l a b s  lose their excess nega- 
tive (tlielulnal) buoyancy and assimilate in the 
iniddle of the lower mantle (9). 

RMS Wavespeed Ratio t, 
0 5  06 0 7  0 8  0 9  1 1 1  2 2  13 . 

Relative radial correlation 

Fig. 1. Depth variation of two global diagnos- 
tics deduced from recent tomographic models 
(2, 32). The radial correlation (solid line) (12) is 
a measure of the continuity of structure in 
radial direction. For our purposes the absolute 
values are less important than the relative vari- 
ations, which reveal a reduced correlation of 
structure between 400 and 1000 km and be- 
tween 1600 and 2500 km depth. The dashed 
line depicts the radial variation of the root 
mean square (RMS) amplitude of relative vari- 
ations of bulk sound and shear wavespeed, j = 
dln+ldlnp, after (32); see (30) for explanation 
of symbols. The open (gray) symbols mark the 
depth range where scattering of short-period 
PKP waves may occur (35). 
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Other observations are, however, more dif- 
ficult to explain within the framework of purely 
thermal convection. First, jomt interpretations 
of P and S data (30) have revealed radial chang- 
es in < = dln+idlnp (the ratio between relative 
variations in bulk sound, + = *, and shear 
wavespeed, P = m) (31, 32). The depths 
where the root mean square (rms) amplitude of 
< changes most coincide with steep gradients in 
the radial correlation profile (Fig. 1). This ob- 
servation suggests that the mantle comprises 
three dynamic regimes, and not two as suggest- 
ed by conventional models of stratified flow. In 
the bottom third 5 varies laterally, with positive 
and negative values contributing to the en- 
hanced rms values (32). A recent study (33) 
revealed that the wavespeed ratio v = dlnpi 
dlncu, with cu the compressional wavespeed, 
reaches anomalous values in certain regions 
only-for example, in the central Pacific man- 
tle deeper than 1800 km. The lateral, and hence 
isobaric, changes in sign and magnitude of 5 or 
v are hard to explain solely by thermal varia- 
tions at high ambient pressures and suggest 
variations in composition (34). There is a cave- 
at: Interference with core-refracted SKS waves 
can degrade the quality of the direct S data for 
epicentral distances between, roughly, 80' and 
90°, that is, S wave turning points deeper than 
about 2000 km. Further research is thus re- 
quired to substantiate the inferred changes in < 
and v in the deep mantle. 

Second, analysis of high-frequency ( 1  H7) 
precursors to the core phase PKP has provided 
compelling evidence for the presence of small 
(approximately tens of kilometers) scatterers of 
seismic energy in the bottom 1000 krn or so of 
the mantle (35). Both the sharpness of their 

interface and their size are inconsistent with a 
thermal origin. Short-period P-S phase conver- 
sions at 1600-km depth have also been ex- 
plained by compositional heterogeneity (36). 
The geographical distribution of either type of 
scatterer is, however, not yet established, so that 
it is not currently known if and how these 
observations relate to large-scale patterns of 
mantle flow. 

Third, the seismologically slow regions that 
contribute to the long-wavelength pattern in the 
deep mantle--for example, beneath the Pacific 
and Africa-often extend far above the CMB 
(2, 3, 27, 33, 37). lmage resolution is an issue, 
but the dimension and morphology of such 
"mega-plumes" differ from those expected for 
thermal events and, even with a range of bound- 
ary conditions and viscosity profiles, they are 
not easily reproduced by computer simulations 
of thermal convection (4, 38). Convective insta- 
bilities limit the temperature contrast across a 

purely thermal boundary layer, whose collapse 
can thus not produce sufficient temperature con- 
trasts to explain the low wavespeeds (39. 40). 

Finally, slight superadiabatic tempera- 
tures in the bottom 1000 krn of the mantle 
have been proposed on the basis of (i) small 
radial variations of the inhomogeneity param- 
eter (41, 42), (ii) an increase with depth of 
viscosity and, perhaps, density that is smaller 
than expected from adiabatic compression 
(43, 44), and (iii) numerical flow modeling 
with maximum viscosity near 2000-km depth 
(45). Fundamental uncertainties render these 
inferences inconclusive (43, 46), but if true, 
superadiabatic temperatures suggest ineffec- 
tive removal of heat from the deep mantle. 
The implied sluggish convection can tempo- 
rarily be achieved with pressure- and temper- 
ature-dependent rheology (45) but is difficult 
to maintain on geological time scales without 
gravitational stabilization if radiogenic heat 
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West East 
Fig. 3. Iso-surface representation (Cartesian projection) of a smooth version of the model displayed 
in Fig. 2. The regions of faster-than-average compressional wave propagation illustrate the 
worldwide disruption of structure at about two-thirds of the depth to the CMB. Wavespeeds less 
than 0.34% faster than the reference values are not shown; choosing a smaller amplitude cut-off 
would reveal narrow fast structures protruding to the CMB beneath Central America and east Asia, 
which seem isolated events. 

Fast c 
Fig. 2. Lateral variation in compressional wawspeed at 1250 km (A), 
2000 krn (B), and 2800 km depth (C). Tomographic imaging suggests that A 

there is no gradual change in the pattern of heterogeneity in the rnid- 
mantle to that just above the CMB; see also Fig. 3. The wawspeed varies 
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productioii is sigiiificant. High-viscosity 
blobs in tlie deep ma~itle liave beell proposed 
to explaiii tlie survi\ral of distinct, enriched- 
isotope reservoirs (47). but the enhanced heat 
productioii would rapidly destroy the viscos- 
ity contrast unless it is soiiieho\~ controlled 
by compositio~lal variatioiis. 

Each of these lines of evidence needs to be 
substantiated, but together they suggest changes 
in bulk compositioii in tlie bottom third of the 
mantle. ,411 exciting possibility is that tlie aiioiii- 
alous doiiiai~is contain relatively uiidepleted 
material tliat lias re~ilained isolated from the rest 
of the ~iiantle since the early stages of Ea~tli's 
evolution. Tlie presence of enriched inaterial 
implies eldialiced heat production, and. analo- 
gous to tlie stabilizatio~l of D" material pro- 
posed by others (40, 48). tlie positive buoyancy 
must be co~ilpe~isated by increased intli~lsic 
density if tlie reservoirs are to re~iiai~i dynami- 
cally stable (7). The existence of dense but 
seismologically slow (and presumably hot) re- 
gions in the deep mantle lias been collfir~ned by 
studies of Earth's free oscillations (49). Tlie net 
density increase may be small. which allows 
substantial topography of tlie the~~iiochemical 
boundary layer (7, 38). Some dowiiwelli~lgs 
may depress tlie interface aiid sink to near tlie 
CMB-for example, beneath eastern Asia aiid 
central Aiieiica. Elsewhere, tlie hot, dense ma- 
terial iiiay rise up to large distances above tlie 
CMB. which can explain tlie "mega-plumes" 
beneath Africa aiid the westem Pacific (38) aiid 
perhaps also the scatterers in tlie mid-mantle 
(36). It inay not be easy to detect the interface 
by con\~eiitional seismic iiuagiiig on tlie basis of 
r~aveform stacks. 

U~lderstalidi~ig the above i~ifere~lces in terms 
of high-pressure nlajor ele~iie~lt iiii~leralogy and 
phase cliemishy re~nai~ls a challenge. Of poten- 
tial iinportance is tlie breakdown of mantle sili- 
cates illto dense oxides (14 ) ,  aloiig with, and 
perhaps as a ineclianism for, iron eiriclmeiit. 
The theirnodynamic stability of (Mg,,Fe,+,)- 
SiO, perovskite is fiercely debated (9, 50), but 
experimental (51) and theoretical (52) sh~dies 
suggest tliat. dependiiig on tlie geothem~, it call 
dissociate illto magiiesiowCistite, (Mg,,,Fe, +,)O. 
and post-stisliovite, SiO, (53). at pressures ex- 
ceeding 65 GPa (-- 1600-km depth). Eiriclied in 
iron (S > y) coiiipared with the bulk lower 
mantle, n~ag~iesioniistite will be denser aiid seis- 
mically slower than perovskite (54). At these 
high pressures. FeO-iich phases iiiay separate 
from the MgO-rich assemblage (55) arid traiis- 
form to denser st l-~~ch~res (56). thus enhancing 
Fe e~iriclment and rvavespeed reduction. Fur- 
thermore. the clianges in mineralogy can also 
influe~lce physical processes; for example; iron 
may liave leached out of the silicate iila~ltle 
while it has been retained in the oxide-lich do- 
mains (57 ) .  I11 this provocative sce~lario, lateral 
variations in bulk co~llpositio~l results from the 
telilperah~re depeildeiice of both the silicate-to- 
oxide and the FeO transforniatio~ls. In the cold 

dow~lwellings of a coiivective system, the per- 
o\rslute mav remain stable across tlie entire 
depth range of tlie mantle, whereas tlie (Fe-rich) 
oxides may be coiiceiltrated in and help stabilize 
the seisinically slow. isotopically ellliched. and 
presumably hot regioiis elsewhere. 
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Dipping Low-Velocity Layer in 
the Mid-Lower Mantle: Evidence 
for Geochemical Heterogeneity 

Satoshi Kaneshimal* and George HelffrichZ 

Data from western United States short-period seismic networks reveal a con- 
version from an 5 to a P wave within a low seismic velocity layer (greater than 
or equal to the 4 percent velocity difference compared to  the surrounding 
mantle) in the mid-lower mantle (1400 to 1600 kilometers deep) east of the 
Mariana and Izu-Bonin subduction zones. The low-velocity layer (about 8 ki- 
lometers thick) dips 30" to 40' southward and is at least 500 kilometers by 300 
kilometers. Its steep dip, large velocity contrast, and sharpness imply a chemical 
rather than a thermal origin. Ancient oceanic crust subducted into the lower 
mantle is a plausible candidate for the low-velocity layer because of its broad 
thin extent. 

Plaiieta~y differentiation and convection cre- heterogeneities express themselves in veloc- 
ate heterogeneities in the mantle, which are ity heterogeneity due to variations in temper- 
ultiiiiately related to the cooling of Earth over ature, bulk composition. and phase changes 
the age of the solar system. Seismically, these in the mantle. In the upper mantle, all three 

mechanis~iis act, accounting for the greater 
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velocity variations there ( 2 5 % )  in compari- 
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