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ple, when looking up a telephone number and 
dialing the individual digits in the proper order. 
Neurophysiological studies have commonly 
used sequential reaching movement tasks in 
which a series of targets is presented to the 
subject, who must then execute a series of move- 
ments to the targets in the same order, under 
visual guidance or from memory (2). By con- 
trast, in the context-recall task (3, 4), the subject 
makes a single motor response dictated by the 
serial order of a test stimulus in a memorized list 
of stimuli. This task provides the requisite con- 
ditions for investigating the neural mechanisms 
of processing the serial order of stimuli uncon- 
taminated by a confounding translation of this 
order into a series of motor responses, that is, in 
the absence of signals related to the planning and 
execution of sequential movements. 
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Serial Position Number of cells 
recorded simultaneously 

Fig. 2. Small ensembles of motor cortical neurons can classify stimulus items in a sequence. 
(A) Average correct classification rates of current serial position during sequences of 
five stimuli (data from monkey 2). A discriminant classification analysis was performed for 
each set of simultaneously recorded cells (10). The chance level of serial position classifi- 
cation for sequences of five stimuli is 20% (dotted line). The average level of correct classifi- 
cation obtained with sets of simultaneously recorded neurons was above 60%. Error bars are SDs 
across set. of cells recorded simultaneously (N = 36). (0) Average correct classification versus the 
number of cells recorded simultaneously. The level of correct classification increased with the number 
of cells in a set. A power function was fitted to  the data and is shown as a continuous line in the plot 
(72). 

Fig. 1. (A) Schematic diagram of the context- 
recall task, illustrating a trial with a sequence 
of five stimuli. Time course of stimulus  re- I- - I 
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sentation and motor response (represeited 
by EMC activity of anterior deltoid). After a 
1000-ms control period where the monkey 
held the cursor in a center window, the stim- 
uli appeared sequentially on the screen (51 t o  
55). Therefore, each stimulus is defined joint- 
ly by its location and its serial position within 
the sequence. The periods between stimulus 
onsets (5) are referred t o  as epochs. Each 
epoch corresponds to  a serial position. For 
example, epoch 1 represents the period from 
the onset of 51 in the downward position t o  
the onset of S2 in the rightward position. At 
the end of the list presentation, the test 
stimulus consisted of a change in the color of 
one of the stimuli from yellow t o  blue. In this 
case, the third stimulus (53) sewed as the 
test stimulus. The test stimulus serves as the 
go signal: The rule of the context-recall task 
is t o  move toward the stimulus that imme- 
diately followed the test stimulus in the se- 
quence; therefore, in this example the correct 
response is a movement t o  the fourth stim- 
ulus in the sequence (54). This report deals 
with the list presentation phase of the task, 
namely, from 51 onset until test stimulus 
onset. The locations of the list stimuli in this 
example are illustrated below the EMG trace 
by small dots on a circle. RT, reaction time. 
(0) Schematic diagram of the trial depicted in 
(A), as it actually appears on the screen dur- I 
ing the recall phase. The third stimulus (53) 
has changed from yellow t o  blue, instructing 
the monkey t o  move the red cursor from the center window toward the fourth stimulus (54). (C) Venn diagram of the pro ortions of cells 
showing (i) a statistically significant effect of Motor Direction (8) only during the motor response period (green MD section). (i) a statistically 
significant effect of stimulus Serial Position, Location, or their interaction only during the list presentation phase (hot pink LP section), and (iii) 
statistically significant effects during both the motor response period and the list presentation phase (light pink MD+LP section). The areas of 
sections are proportional t o  the actual percentages (see text). (D) Bar graph illustrating the proportions of cells in which statistically significant 
effects were obtained for the main effect of Serial Position, Location, and Serial Position X Location interaction. (E) Cumulative frequency 
distributions of the level of statistical significance obtained for Motor Direction during the motor response time (green) and Serial Position (main 
effect only) during the list presentation phase (pink). 
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In a recent version of this task (4) ,  several 
stimuli are presented successively on a screen, 
and then one of them changes color (the test 
stimulus); the subject is required to make a 
single motor response toward the stimulus that 
followed immediately the test stimulus in the 
list. In the present experiments, two monkeys 
were trained to perform the context-recall task 
shown in Fig. 1, A and B (5). They operated a 
semi-isometric joystick to control a force feed- 
back cursor on a video screen. A trial began by 
turning on a white circle in the center of the 
screen, which the monkey captured with the 
force feedback cursor. After 1 s (the control 
period), three to five yellow stimuli were shown 
successively on a circle and stayed on (the list 
presentation phase); during both of these peri- 
ods, the monkey had to keep the force feedback 
cursor within the white circle at the center of the 
screen (6). Then one of the stimuli (except the 
last) changed color from yellow to blue (the test 
stimulus), and this instructed the monkey to 
exert force to move the cursor from the center 
of the screen toward the stimulus that immedi- 
ately followed the test stimulus during the list 
presentation phase. The reaction time was de- 
fined as the time from the onset of the test 
stimulus until the initiation of the motor re- 
sponse; the motor response period was defined 
as the time from the onset of the motor response 
until the threshold force was exceeded (5). In 
this task, each series of list stimuli was defined 
uniquely by the location of the stimuli on the 
screen and by their serial order in the series. We 
recorded the activity of 925 cells in the motor 
cortex during task performance (7). 

As expected from the known role of the 
motor cortex in the initiation and control of 
movement, the activity of many cells during the 
motor response period was related to the direc- 
tion of the response (8) ("motor direction" cells, 
6241925 = 67.5%; green and light pink sections 
in Fig. 1C); a smaller proportion of cells (1771 
925 = 19.1%) showed relations only to motor 
direction (green section in Fig. 1C). Interesting- 
ly, a large proportion (4471624 = 71.6%) of 
these cells also changed activity during the list 
presentation phase in relation to stimulus param- 
eters (serial position, location, or both), even 
though there was no overt motor response dur- 
ing that period ("motor direction + list presen- 
tation" cells, 4471925 = 48.3%; light pink sec- 
tion in Fig. 1C). In addition, 1901925 = 20.5% 
of cells showed such modulation of activitv 
during the list presentation phase in the absenck 
of a motor directional effect ("list presentation" 
cells, hot pink section in Fig. 1C); this brings the 
total number of cells engaged during the list 
presentation phase to 6371925 = 68.9% (hot 
pink and light pink sections in Fig. 1C). Finally, 
11 11925 (12%) of the cells did not show any 
significant effect. 

Analyses of covariance (ANCOVA) tested 
the effects of the following factors that were 
varied during the list presentation phase: Serial 

Position (of a stimulus in the list) and Location 
(of the stimulus on the screen). The main effect 
of Serial Position was significant in 52.8 + 
10.67% of cells [mean 2 SEM, N = 5 combi- 
nations of monkey and sequence size ( 3 1  (Fig. 
ID); the main effect of Location was significant 
in 7.8 ? 1.64% of cells, and the effect of the 
Serial Position X Location interaction was sig- 
nificant in 22.4 2 4.61% of cells (9). To com- 

tion on cell activity during the motor response 
period, we compared the level of statistical sig- 
nificance obtained for these two effects within 
the same sets of trials (8). The statistical signif- 
icance of the Serial Position effect above was 
higher than that of the effect of Motor Direction 
during the motor response period [Fig. 1E; P < 
0.0001, Kolmogorov-Smimov test; N = 1012 
and 978 cases for Motor Direction and Serial 

pare the Serial Position effect during the list Position effects, respectively, out of a total of 
presentation phase with a commonly assessed 1812 cases analyzed fmm the same trials (8)]. 
motor effect, such as the effect of Motor Direc- These results underscore the major impact 

Fig. 3. (A to  C) Peri- 
stimulus time histo- A 
grams of cell activity 30 
during the list presen- 
tation phase of the 9 
context-recall task (bin $ 
= 50 ms; data from ,, . . monkey 2). Histograms / . . . . : . .'I represent the average I 

cell discharge during all 
correct trials of the de- 
picted sequence. The 
sequence is illustrated 
below each histogram 
by small dots on a cir- 
cle. Vertical lines repre- . I sent the boundaries be- - .. .. .. I .. I 
tween epochs (at inter- 
vals of 650 ms). Each Control List Presentation 
histogram ends at test Period I Phase 
stimulus presentation 
(the end of the list pre- 
sentation phase), hence B . . 

of a neuron that chang- V) 

es activity according to o .. .. . .. . ... 
the current serial posi- Period Phase 

I l i  - - - I  tion within the' se- 
I 

quence, irrespective of 
the location of the 
stimuli, is shown in (A). 1 1 1 1 1  
Two different sequenc- 
es of five stimuli are 
depicted (upper and , ..T 
lower panels). For both I . . .. 
sequences, activity in- . . . .  ../I 
creases when the first 
stimulus is presented Control List Presentation 
(epoch I), returns to Period Phase - La 

rC 

the baseline (control 
Med~al 

period) rate during ep- 5 mrn - 
4 

och 2, and then falls below baseline during epochs 3, 4, Anterior tl 
and 5. This pattern was consistent regardless of the 
actual sequence of stimuli presented. For example, in the upper sequence, 51 is presented t o  the 
right, whereas in the Lower sequence 51 is presented in the lower Left position. However, the cell 
response was similar during the presentation of the two sequences. An example of another neuron 
whose activity reflects the serial position of the current stimulus, regardless of its location, is shown 
in (B). As in (A), two different sequences of five stimuli are shown. This neuron maintained its 
baseline activity while the first four stimuli were presented, but responded with a burst of activity 
during epoch 5, irrespective of the sequence of stimuli. An example of another motor cortical 
neuron that was influenced by the interaction of the serial position and the location of the stimuli 
is shown in (C). Cell activity was modulated mostly during the second and third epochs of list 
presentation, but this depended on the particular sequence of stimuli presented. For example, clear 
increases in activity were present during some sequences (upper two panels) but not for others 
(lower panel). (D) Photograph of the peri-Rolandic cortex of the left hemisphere of monkey Z 
showing the entry points of the microelectrode penetrations during which the neurons in (A) to (C) 
were recorded in the primary motor cortex. CS, central sulcus; AS, arcuate sulcus; PCD, precentral 
dimple. 
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of serial order of the stimuli on cell activity 
during the list presentation phase, and of the 
interaction of the seiial order with stim~llus 
location, which defines the direction of a po- 
tential inotor response. These two findings, talc- 
en together, indicate that the changes in neuro- 
nal activity observed during the list presentation 
phase truly reflect aspects of the sequence itself. 
We tested this hypothesis by analyzing ensem- 
bles of siinultaileously recorded neurons to 
e\,aluate how well the combined patteins of 
activity could classify items in the sequence 
(lo), namely stimuli defined jointly by their 
serial positioil in the sequence and their location 
on the screen. Indeed, high rates of coi-rect 
classificatioil were obtained (11) (Fig. 2). The 
mean conect classification rate for each serial 
positioil in seqLiences of five stimuli was greater 
than 60% (Fig. 2A). The col~ect classification 
rate increased as a function of the number of 
cells in the ensemble (Fig. 2B), which suggests, 
in turn, that individual cells provide largely 
independent inforniation about the items in the 
sequence. Together, these results demonskate 
that during different epochs of presentation of 
the stimuli, the patterns of distributed activity in 
even small ensembles of inotor col-tical cells 
(12) are sufficiently distinct and robust to pro- 
vide a basis for encoding the sequence. 

Representative examples of single-cell activ- 
ity during the list presentation phase are illus- 
kated 111 Fig. 3. The histograms in Fig. 3, A and 
B, illustrate consistent changes in the activity of 
two cells in association with certain serial posi- 

tions. The \,isual stimuli displayed during a spe- 
cific serial position epoch differed for different 
sequences (Fig. 3, A and B). Other neurons were 
influenced by both the serial position of the 
stinl~ili in the sequence and their location on the 
screen (Fig. 3C). Changes in neural activity were 
not related to eye position (Fig. 4 and Fig. 5, left 
side) nor to the associated retinal location of the 
most recently presented stimulus (Fig. 5, right 
side). Coilceiniilg the latter point, it is conceiv- 
able that the serial position of this stinlulus could 
be associated with a pa~ficular retinal location 
when it appeared on the screen, which then 
could accouilt for the serial position-related ac- 
tivity. For example, it could be that the monkey 
fixated its eyes such that when the fifth stimulus 
appeared, it would always fall in the same reti- 
notopic position. Howe\,er, this was not the case. 
As shown in Fig. 5 (top light), the retinal loca- 
tion of the fifth stinlulus for the cell illustrated in 
Fig. 3B was indeed distributed throughout the 
retinotopic space; that is, it was not coilfilled to 
any uniq~ie location. Similarly, sti~nuli during 
the other four epochs were also dishibuted 
throughout the retinotopic space (Fig. 5, middle 
light). The broad dishibutioils of stimuli on the 
retina shown in Fig. 5 (top right and middle 
light) allow the conlparison of neural activity 
during the presentation of stimuli with different 
serial position but with the same, or closely 
similar, retinal locations. These stimuli are 
shown as the overlapping points in Fig. 5 (bot- 
tom light) and the corl.esponding neural activity 
le\,els shown in the bar graph in Fig. 5 (bottom 

A control List Presentation Phase 
Period 

right): The activity was much higher for the 
stimuli at serial positioil 5 than for those at 
serial positioils 1 to 4, even though they were 
matched for retinal location. The same con- 
siderations apply for eye position (Fig. 5, left 
side). We conclude that the serial position of 
the stimuli is the iinportant dete~nlinant for 
cell activity, and not their retinal location or 
eye position (13). This is not surprising be- 
cause these recordings were from the an11 area 
of the inotor cortex (Fig. 3D). 

Together, these results document a strong 
effect of serial order on cell activity: In 34.4% 
of the cells, Serial Position was the only signif- 
icant factor (9), whereas in 52.8% of the cells it 
was a significant factor alone or together with 
other factors (Fig. ID). In addition, the level of 
sigl~ificance of this effect was even higher than 
that of Motor Direction (Fig. 1E). These find- 
ings establish serial order as an impoi~ant factor 
for inotor cortical cell activity. In conRast, stim- 
ulus Location, deiloting the direction of a po- 
tential motor response, had a slight effect alone 
(9) but interacted fieq~lently with Serial Posi- 
tion (Fig. ID). This suggests that serial order 
had a strong, pure effect on cell activity, where- 
as stiinulus locatioil was engaged within the 
context of serial order. 

These results call be interpreted with respect 
to three lcey aspects of the task perfoimed: (i) 
Unlilce other tasks ( 4 ,  in the present taslc just a 
single, one-directional  noto or respoilse was 
made in a trial, that is, no sequence of motor 
responses to each stim~llus was performed: this 
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Fig. 4. Rasters of neural impulse - 

activity and records of eye posi- 
t ion in t w o  single trials (A and 0) 1 

- 
of the context-recall task. The c 
trials are from the cell illustrated 
in Fig. 38. Panels in (A) and (B), 
from top t o  bottom, show the 10 deg 
sequence of stimuli, a raster plot 
of the cell activity, the X- and 
Y-coordinates of eye position in T 
time, and scatterplots of the eye 
XY position during epoch 5. - 

From the histogram in Fig. 3B, i t  
is apparent that this cell increased activity during epoch 5 of the list 
presentation phase; this can also be seen in the single-trial impulse activity 
here: The cell is relatively quiet during epochs 1 t o  4, and increases its 
discharge rate during epoch 5. Even though the eye position varied widely 

. . ." 
x I----- - 

I 
10 deg 

during the list presentation phase, both wi th regard t o  fixation and saccadic 
eye movements, the increase in neuronal activity was restricted t o  epoch 5. 
This example shows that  cell activity was not  related t o  eye movement or 
eye position, but rather t o  the serial position epoch. 
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could explain why stimulus Location alone was 
not a frequent effect. (ii) The required single, 
correct response could be arrived at only by 
taking into account the serial order of the stim- 
uli, which means that information about serial 
order was indispensable; this could explain why 
Serial Position was such a frequent and strong 
(relative to Motor Direction) effect. (iii) A cru- 
cial step in the task was the identification of the 
location of the stimulus that appeared immedi- 
ately after the test stimulus during the list pre- 
sentation, which means that stimulus Location 
was tied to Serial Position; this could explain 
why the Serial Position X Location interaction 

was a frequent effect. It is remarkable that 
all of these effects were documented in the 
motor cortex, an area traditionally regarded 
as composed exclusively of "upper motor 
neurons." Our results add to a substantial 
body of evidence documenting the involve- 
ment of the motor cortex in other complex 
functions (14). 

The neuronal responses described here were 
commonly phasic; that is, a change in neuronal 
activity, once evoked, was typically not main- 
tained throughout the remainder of the list pre- 
sentation phase (Fig. 3) (IS). This suggests that 
the information about the sequence is processed 

Eye position Retlnotopic position 

I a n >  pmnm sen> paaar 1 

Fig. 5. Eye position, retinotopic Location, and associated neural activity for the cell illustrated in 
Figs. 3B and 4. Upper panels (serial position 5): left, superimposed eye fixations (minimum of 100 
ms duration) (N = 160 fixations); right, superimposed retinotopic positions of the fifth stimulus 
during these eye fixations; center, bar graph of mean (2SEM) neural activity during these fixations. 
Middle panels (serial positions 1 to 4): left, superimposed eye fixations (N = 420 fixations); right, 
superimposed retinotopic positions of the most recent stimulus (for each serial position) during 
these eye fixations; center, bar graph of mean (2SEM) neural activity during these fixations. Lower 
panels (superimposed records and neural activity for matched positions): left, eye positions for 
serial positions (SP) 1 to 4 (gray) and 5 (black); right, retinotopic positions for serial positions 1 to  
4 (gray) and 5 (black); left bar graph, mean (ZSEM) neural activity for the subset of eye positions 
that were similar (within OSO) between serial position 5 (black, N = 160) and serial positions 1 to 
4 (gray, N = 116); right bar graph, mean (2SEM) neural activity for the subset of retinotopic 
positions that were similar (within 1.4O) between serial position 5 (black, N = 109) and serial 
positions 1 to 4 (gray, N = 73). Neural activity was consistently higher for serial position 5 than 
for serial positions 1 to  4. This difference was statistically highly significant when the overall rates 
were compared (bar graphs in upper versus middle panels) and when only the subsets of matched 
eye positions (bottom left) or retinotopic positions (bottom right) were compared (t test, P < 
0.00000001 for each of the three comparisons above). 

in the motor cortex, which most likely partici- 
pates as a component in a distributed network 
(2, 16) that collectively encodes, stores, and 
recalls the sequence. A prominent node in that 
network is the dorsolateral prefrontal cortex, 
which has been shown to play a key role in the 
capacity to act on the basis of serial order (1 7). 
Our results show that the motor cortex also 
participates in the processing of serial order 
information within the context of a motor task, 
that is, the serial order of stimuli on which the 
selection of a motor response must be based in 
the task used (18). This serial order informa- 
tion, once encoded and held in memory, is used 
after the presentation of the test stimulus to 
search the sequence, identie the serial position 
of the test stimulus in the sequence, and retrieve 
the stimulus associated with the next serial po- 
sition, which specifies the required motor re- 
sponse. The unitary principle of this search 
was identified as an abrupt shift in the 
discharge of motor cortical neurons from 
that associated with the direction of a spe- 
cific stimulus to that appropriate for the 
next one (4). The repeated application of 
this rapid-shift process from item to item 
would constitute memory scanning. Be- 
cause the encoded sequence information 
can be accurately recovered from small 
ensembles of motor cortical neurons, this 
search could be monitored in time from the 
patterns of activity of these ensembles dur- 
ing the response time. 
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