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The lack o f  a clear re lat ionship be tween spawn ing  o u t p u t  and  rec ru i tment  
success cont inues t o  con found  a t t e m p t s  t o  understand a n d  manage t e m p o r a l l y  
variable f ish populat ions.  This re lat ionship f o r  a c o m m o n  reef  f ish is s h o w n  t o  
be  obscured b y  nonl inear  processes i n  opera t ion  dur ing  t h e  larval  phase. N o n -  
l inear  responses o f  larval  f ish t o  t h e i r  no isy  physical  env i ronment  m a y  o f f e r  a 
general  explanat ion f o r  t h e  errat ic, o f t e n  episodic, replenishment  o f  o p e n  
m a r i n e  populat ions.  

Understanding the nature of feedback control 
between the size of a population and its suc- 
cessful replenishment is fundamental to the 
understanding of the mechanics of population 
change. Fisheries assessors in particular use 
various models (for example, Beverton-Holt) 
to try to predict recruitment levels from re- 
productive stock size (I). Such fitted curves, 
however, have been plagued by extreme vari- 
ance in recruitment: and explaining this biva- 
riate scatter has remained a largely unrealized 
goal for the last 100 years. Some researchers 
have attributed the unexplained variability to 
sampling error and the misuse of analytical 
techniques (2);  while others have suggested 
that unpredictable and high levels of mortal- 
ity during an intervening larval phase will 
necessarily obscure the stock-recruitment re- 
lationship (3). Because an understanding of the 
fate of larval fishes has remained elusive, it has 
proven difficult to evaluate the relative con- 
tributions of these sources of error. Here; we 
offer a new approach to investigating pro- 
cesses at work during the larval phase. 

For many benthic marine species, obser- 
vations of rates of larval supply have been 
recorded for considerable lengths of time (4). 
Such records are typically erratic, dominated 
by a small number of high-magnitude events 
(5) .  Attempts to relate larval numbers to con- 
currently measured environmental variables 
using linear techniques-that is, regression 

We focused on a population of Pomacen- 
tr~ls amboinensis, a common damselfish spe- 
cies found on the Great Bal~ier Reef. Australia. 
Daily observations of spawning output (visual 
census of eggs released from nests) and recn~it- 
ment (counts of recently settled juveniles) have 
been recorded for 2 years. and larval supply 
(mature larvae collected with light traps) for 3 
years, at Lizard Island. As is characteristic of 
fisheries problems. density-dependent feedback 
between stock size and subsequent recruitment 
accounts for only - 10% of the variat~on in the 
relationship be& een these & o variables at the 
scale of a single reef (9. 

We appl~ed techn~ques from nonlinear 
time serles analysis to determine whether 
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the fluctuations in the larval supply time 
series are indicative of the action of non- 
linear processes or are random features of 
the data. The approach was to construct a 
series of algorithms, ranging from global/ 
linear to localUnonlinear, to forecast the 
data based on lag~ed-coordinate embed- 
dings (7). The underlying philosophy is 
that, if nonlinear algorithms are found to 
outperform their linear counterparts, this 
may be taken as evidence that the processes 
that generated the time series were them- 
selves nonlinear (8) .  Alternatively: if the 
underlying processes were linear or sto- 
chastic, linear models should provide better 
forecasts, as they use global information to 
generate predictions. For forecasting algo- 
rithms, we used the method of S-maps (9). 
S-maps generate forecasts for each point in 
the embedded time series by first excluding 
that point (the predictee), and then fitting a 
linear surface to the remaining data (the 
predictors). This technique is similar to 
linear kernel regression (10) in that the 
degree of nonlinearity in these mappings is 
given by the extent to which the contribu- 
tion of predictor points to a fitted surface is 
a function of their distance from the pre- 
dictee. This weighting procedure is con- 
trolled by a tuning parameter theta, where 
theta equal to zero gives a global linear 
map: and increasing values of theta give 
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analysis-have been largely unsuccessful. 
Episodes of strong larval supply oftell Table 1. Summary of model statistics. Percent illumination was calculated by multiplying the proportion 

of a full moon for each night by the elongation (phase angle) for that night. Wind data were taken from 
been termed random and to be un- an automatic recording station (Willis Island) situated in the same weather stream as Lizard Island. 
predictable and Cross-reef wind comoonents were calculated bv weiehtine wind meed according t o  the anele Deroen- 

2 " L .  L. u r n ,  

meteorological data. However. we provide dicular t o  the reef. 
evidence that pulses in lama1 supply may 
arise from a nonlinear response of larval 
fishes to a relatively small number of key 
physical forcing variables. 
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Variables Model type Rho Error 

Percent illumination 19 day lag Linear (in-sample) 
Linear (out-of-sample) 
Nonlinear (n = 70) 

Percent illumination 19 day lag Linear (in-sample) 
Plus cross-shelf wind speed 1 day Linear (out-of-sample) 

Nonlinear (n = 70) 
Percent illumination 19 day lag Linear (in-sample) 
Plus cross-shelf wind speed 1 day Linear (out-of-sample) 
Plus daily wind speed 16 day lag Nonlinear (n = 30) 

Nonlinear S-map (0 = 0.8) 
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increasingly local and nonlinear algorithms 
(11). 

Results of the S-map analysis are given in 
Fig. 1. Forecastability in both egg production 
and recruitment remained essentially constant 
across the spectrum from linear to nonlinear 
models; daily dynamics of spawning and re- 
cruitment were well described by a simple 
linear autoregressive model (12). However, 
for the larval supply series, prediction im- 
proved significantly (P < 0.05, Z test) as the 
model was tuned toward nonlinear solutions. 
This suggested that, in addition to purely 
linear or stochastic events, there was a non- 
linear component of larval phase processes 
that was obscuring the spawning-recruitment 
relationship. 

To test this, we examined three distinct 
physical-biological interactions: a lunar or 
semilunar entrainment of egg release from 
the nest, the transport environment experi- 
enced by mature larvae returning to the reef, 
and the effect of turbulence levels on young, 
first-feeding larvae (13). We chose, respec- 
tively, the following physical variables as 
representative of these processes: nighttime 
irradiance lagged 19 days (corresponding to 
average larval life), cross-shelf wind speed 
lagged one day, and average daily wind speed 
at a range of time lags. Model generation 
involved fitting linear surfaces: model non- - 
linearity was controlled by adjusting the 
neighborhood size to which the surfaces were 
fit (14). To increase the number of nonzero 
points in the time series, we considered all 
pomacentrid species in this analysis (15). 
Table 1 gives summary statistics for all the 
multivariate models constructed, and repre- 
sentative model forecasts are given in Fig. 2. 

We began by modeling lunar entrainment, 
a deterministic component of larval supply. 
There was little improvement in model per- 
formance when nonlinear models were con- 
sidered in comparison with linear regression. 
We then added cross-shelf wind speed, a 
stochastic component, into the model. In this 
case, nonlinear maps offered some increase in 
forecasting performance (Table 1) (1 6). 

Choosing a physical variable to reflect 
events occurring early in larval life was more 
difficult. Such effects are plausible, given the 
suggestion that retention mechanisms may 
work to keep larvae local to their native reef 
(1 7), and otolith studies describing the age of 
these fish have been reported (6). However, 
because not all larvae are precisely the same 
age, and further because both the time re- 
quired for yolk-sac resorption and the time to 
inevitable mortality in the absence of suc- 
cessful feeding are unknown, we proceeded 
conservatively by considering a wide range 
of lags (from 1 to 30 days) for daily averaged 
wind speed. Viewed linearly, there was no 
significant difference in model performance 
between any of these lags. 

We then tuned all 30 lags toward nonlin- 
ear model solutions, creating a rho-lag-neigh- 
borhood surface (Fig. 3A). The slight im- 
provement in correlation coefficient at inter- 
mediate lags, which was evident in linear 
models, increased significantly (Z test; P < 
0.05) as the models were made more nonlin- 
ear. Notably, only models coinciding with the 
age of the larvae offered improvement over 

the bivariate nonlinear model. Otolith analy- 
sis of these fishes has indicated that they are 
from 16 to 23 days old, with a mean age of 19 
days; the strongest effects we identified 
ranged from 15 to 17 days and centered at 16 
days, 3 days after release from the nest. 

To extract the relationship between larval 
supply and each of the three forcing variables 
in this model, we employed a neighborhood 
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Fig. 2. Predicted versus 
observed values for four 
physical models consid- 
ered (Table 1). Positive 
axis gives observed lar- 
val number; negative 
axis is (-1 X predicted 
value). (A) Linear, uni- 
variate model using lu- 
nar phase with optimal 
lag 19 days). (B) As in  
(A), but with a nonlinear 
model operating on lu- 
nar phase. (C) Linear, tri- 
variate modeL (D) As in 
(C), but with a nonlinear 
modeL In addition to su- 
perior prediction statis- 
tics, the nonlinear trivari- 
ate model (D) best cap- 
tures the erratic appear- 
ance of the series. 

Fig. 3. (A) Rho-neighborhood 
size-wind stress lag surface. 
The slight increase in rho at 
intermediate lags strengthens 
as the models become increas- 
ingly nonlinear. The best mod- 
el, with a 16-day lag, corre- 
sponds t o  3 days after the av- 
erage date of larval release 
from the nest. (8) Response of 
larvae to  19-day lagged night- 
time irradiance. Maximum lar- 
val abundance is associated 
with release on the full moon. 
(C) Larval response to  recent 
cross-shelf wind speed. Larvae 
are positively associated with 
weak onshore winds (positive 
values), which may enable ma- 
ture larvae t o  promote their 
return to  the reef. (D) Lawal 
number as a function of 16-day 
lagged average daily wind 
stress. Note the dome-shaped 
response to  wind stress, cen- 
tered around 4 t o  8 mls. 
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averaging procedure (18). For nighttime irra- 
diance (Fig. 3B), maximum larval abundance 
was associated with a full moon 19 days 
prior. For cross-shelf wind speeds (Fig. 3C), 
larval abundance was positively associated 
with weak onshore winds. Recent findings 
have demonstrated that mature reef fish lar- 
vae are strong swimmers (19), and we hy- 
pothesize that lower wind speeds may pro- 
mote easier orientation and increase direc- 
tional swimming in larvae as they approach 
benthic habitats for the first time. The rela- 
tionship between larval supply and 16-day 
lagged wind speed is shown in Fig. 3D. Re- 
cent hypotheses have proposed a dome- 
shaped relationship between larval feeding 
and turbulence levels (20). Our analysis sup- 
ports this, and we suggest that wind effects 
are indeed important to early larval survival. 
In this case, the optimal window for early 
larval survival appears to have been approx- 
imately 4 to 8 meters per second. 

It seems clear that, in this system, vari- 
ability in larval supply originates from both 
deterministic (lunar entrainment) and sto- 
chastic processes (wind stress). The key ele- 
ments of nonlinearity appear to be the re- 
sponse of the larvae to these stochastic 
variables and the sequential nature of pro- 
cesses operating at different times in larval 
life. Such sequential action serves to couple 
physical variables, causing their total im- 
pact on larval supply to be multiplicative. 
In other systems, one may expect the most 
relevant physical variables and lags, and 
the responses to those variables, to vary. 
However, it is likely that these key ele- 
ments of nonlinearity will remain. We 
therefore offer a dynamical explanation for 
the episodic nature of larval supply: the 
nonlinear amplification by biological pro- 
cesses of stochastic physical forcing. 
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Exon Shuffling by L 1  
Retrotransposition 

John V. Moran,"? Ralph J. DeBerardinis, Haig H. Kazazian Jr.? 

Long interspersed nuclear elements (LINE-Is or Lls) are the most abundant 
retrotransposons in the human genome, and they serve as major sources of 
reverse transcriptase activity. Engineered Lls retrotranspose at high frequency 
in cultured human cells. Here it is shown that Lls insert into transcribed genes 
and retrotranspose sequences derived from their 3 '  flanks to  new genomic 
locations. Thus, retrotransposition-competent Lls provide a vehicle to mobilize 
non-L1 sequences, such as exons or promoters, into existing genes and may 
represent a general mechanism for the evolution of new genes. 

The human genome is littered with noncod- 
ing DNA, often disparaged as "junk DNA." 
Much '.junk D N A  results from the reverse 
transcription of cellular RNAs and insertion 
of the cDNAs into new genomic locations by 
retrotransposition. L l s  make up about 15% of 
human DNA (I). The majority of L l s  cannot 
retrotranspose, but an estimated 30 to 60 
full-length L l s  remain retrotransposition- 
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competent (2). These L l s  contain a 5' un- 
translated region (UTR), two nonoverlapping 
open reading frames (ORF1 and ORF2), and 
a 3' UTR that ends in a polyadenylic acid 
[poly(A)] tail (3, 4). ORFl encodes an RNA- 
binding protein (5 ) ,  whereas ORF2 encodes 
an endonuclease (EN) activity (6), a reverse 
transcriptase (RT) activity (7) ,  and a cysteine- 
rich (C) domain of unknown function ( 8 )  
(Fig. 1A). L l  retrotransposition is ongoing 
because recent insertions have caused diseas- 
es in humans and mice (4). L l s  also are 
thought to mobilize Alus and processed pseu- 
dogenes, which make up another 10% of 
human DNA (4, 9). Thus, either directly or 
through the promiscuous mobilization of cel- 
lular M A S ,  L l s  may be evolutionarily re- 
sponsible for one-fourth of human DNA (1). 
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