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Rapid Thinning of Parts of the 
Southern Greenland Ice Sheet 

W. ~rabill , '* E. Frederickn2 S. Manizade,' C. Martin,2 J. Sonntag,' 
R. ~ w i f t , ~  R. ~hornas,' W. Wright,' J. Yunge12 

Aircraft Laser-altimeter surveys over southern Greenland in 1993 and 1998 
show three areas of thickening by more than 10 centimeters per year in the 
southern part of the region and large areas of thinning, particularly in the east. 
Above 2000 meters elevation the ice sheet is in balance but thinning predom- 
inates at Lower elevations, wi th  rates exceeding 1 meter per year on east coast 
outlet glaciers. These high thinning rates occur at different latitudes and at 
elevations up t o  1500 meters, which suggests that they are caused by increased 
rates of creep thinning rather than by excessive melting. Taken as a whole, the 
surveyed region is in negative balance. 

The mass balance of the polar ice sheets is 
clearly important to global sea level, but it is 
still not known whether the Greenland and Ant- 
arctic ice sheets are increasing or decreasing in 
size. Mass balance can be inferred directly by 
comparing repeated aircraft or satellite altimeter 
surveys over periods of a few years, giving an 
indication of the change in volume over the 
survey intervals. Recent analyses of Seasat and 
Geosat radar-altimeter data over southern 
Greenland (1) indicate average thickening be- 
tween 2 and 4 cmiyear at elevations above 2000 
and 1700 m, respectively, for the period 1978- 
1988 at latitudes less than 72ON. Because of 
limitations associated with the satellite instru- 
ments, there are few useful data below eleva- 
tions of 2000 m and scarcely any below 
1700 m. Here. we present results from aircraft 
laser-altimeter measurements of elevation 
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change over all of southern Greenland, includ- 
ing first estimates for the peripheral regions, 
which represent about 400h of the ice sheet area 
and are likely to be most susceptible to climate 
change. 

In 1993 and 1994, NASA surveyed the 
entire Greenland ice sheet by airborne laser 
altimetry, obtaining surface-elevation pro- 
files with root mean square (rms) accuracy of 
10 cm or better (2) along flight lines that 
crossed all the major catchment basins. In 
1998, the 10 flight lines flown in 1993 in the 
south of Greenland were resurveyed with 
about 99% repeat coverage; the flight lines in 
the north will be resurveyed in 1999. 

The airborne topographic mapper (ATM) is 
a conical-scanning laser ranging system with a 
pulse repetition rate of 3 H z  (800 Hz in 1993) 
and a scan rate of 10 Hz (5 Hz). at an off-nadir 
angle of 10". Aircraft location was determined 
by-kinematic global positioning system (GPS) 
techniques, and aircraft heading, pitch. and roll 
were measured by inertial navigation systems. 
At an aircraft altitude of 400 m above the 
surface. the ATM obtained measurements of 
the surface elevations for many 1-m footprints 
within a 140-m-wide swath. with average sep- 
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aration between footprints of about 2 m (4 m in 
1993). Instrument biases and overall perfor- 
mance were checked during each flight by 
overflying flat surface areas (such as sea ice or 
fjords) and precisely surveyed portions of the 
runway. Additional checks on data consistency 
were made by comparing surface elevations at 
locations where flight lines cross and at stations 
on the ice sheet where surface-based GPS mea- 
surements were made (2). During the repeat 
survey, the airplane was navigated along the 
earlier flight lines by a GPS-guided autopilot 
(3), achieving cross-track separations typically 
less than 50 m. 

Most of the ice sheet is sufficiently smooth 
for the 140-m-wide ATM data swath to be well 
described by a series of 70-m square planes 
(platelets) that best fit the data acquired on each 
side of the flight track. Data from different 
flights were compared by seeking the closest 
platelet from the second flight with its center 
lying within 75 m of the center of a platelet 
from the first flight and comparing heights that 
had been interpolated to the point midway be- 
tween the two platelet centers by taking account 

change in surface elevation that occurred be- thickening and thinning rates. Consequently, a 
tween JuneJuly 1993 and JuneJuly 1998. Be- rock uplift rate of about 0.5 cmlyear (I) should 
cause rock beneath the ice sheet is also moving be subtracted from our elevation-change rates 
vertically as a result of past and present changes to yield estimated ice thickening and thinning 
in ice loading, these are not identical to ice rates. 

of the platelet slopes. The plane-surface approx- 
imation introduces random errors to the derived 
elevation changes, but these errors generally are 
small and can be minimized by averaging com- 
parisons along the flight line. The rrns fit of the 
measured surface elevations to these platelets 
was typically 5 cm or better and, for most 
purposes, the platelets adequately represent the 
information contained within the laser data 
while reducing the data volume significantly. 
Where the surface is rough, such as on outlet 
glaciers, the elevation at each laser footprint 
from one flight was compared with elevations 
at all footprints from the second flight that lie 
within a 1-m search radius. 

To estimate errors in computed elevation 
change rates, we note that comparison of plate- 
let elevations at flight-line crossing points from 
the same year gives rms differences of about 10 

Fig. 1. Southern Greenland, showing flight tracks (outlined in black) of laser-altimeter surveys 
color-coded according to the rate of change in surface elevation. Pale gray segments are in balance 
within the survey errors ( 2 2  cmlyear). Regional rates of surface elevation change were obtained 
by interpolating between the flight-track data. The line of the ice-sheet ridge is pink, and the 
2000-m elevation contour is marked by pink dots. 

cm, partly caused by errors that are systematic 
to a flight. Consequently, systematic errors for 
an individual flight could be as high as 7 cm, 
yielding a possible bias in estimated elevation 
change from 1993 to 1998 of about 10 cm 
along each flight line, or 2 cdyear. This should 
be independent of errors for the other nine flight 
lines, so that errors in change rates averaged 
over a region containing many flight lines de- 
crease to as little as 0.6 cdyear. Additional 
errors in each survey, associated primarily with 
a 1-cm uncertainty in the location of the GPS 
base station, introduce a systematic bias in 

Fig. 2. Ice thickening and thin- 
ning rates (dHldt) plotted against 
surface elevation for regions be- 
low 2000 m for the east, south, 
and west coastal regions. There 
is both thickening and thinning 
along the west side of the ice 
sheet, averaging almost exactly 
to zero, but there is major thin- 
ning almost everywhere in the 
east and south. 

change rates of C0.3 cdyear, increasing the 
error in average change rates derived from all 
10 flight lines to 0.7 cdyear. 

Estimated rates of elevation change are 
shown in Fig. 1, with regional trends derived by 
interpolating between flight lines. Interpolation 
is most reliable above 2000 m, where there are 
many flight lines. Figure 1 shows the rates of 
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Three areas in the south are tliickening at 
rates of up to 25 cm/year (centered near 68"N 
3 19"E. 67"N 3 14"E; and 63"N 3 13'E in Fig. 1). 
The hvo northernmost of these show reasonable 
agreement with results from satellite radar-al- 
timeter data (I), with thickening rates in the east 
increasing to more than 15 cini'year nearer the 
coast. 111 the south. thickening rates reach max- 
imuni values of 25 cmiyear. All three thicken- 
ing zones are in regions of high s~iowfall (4); 
witli accumulation rates strongly linked to 
storm intensity and subject to considerable in- 
teranllual variability. However, model studies 
(4) conclude that precipitation over this region 
should have decreased significantly between 
1985 and'1995, which would have resulted in 
thinning. In tlie northwest, where repeat radar- 
altimeter data (1) and compariso~i of snow ac- 
cumulatio~i with ice discharge (5) have shown 
previous tliinnmg, we observe a slight thicken- 
ing. This could represent a change in condi- 
tions with time. 

In tlie peripheral regions, we observe 
large areas of tlii~ini~ig; with thinning rates 
increasing rapidly toward the ocean (Fig. 1). 
W-e observe thinning of up to 20 cmlyear over 
an area centered near 69ON 313"E and at far 
higher rates near tlie coast in the southwest 
and in the east. There is a reinarkably sharp 
transition from thickening in the west to thin- 
ning in the east alinost exactly along much of 
the ice-sheet ridge where it mns noi-tli-soutli. 

Our results agree broadly with those from 
radar-altimeter data (1) for the east of the sum- 
mit iidge but include data from a far larger area. 
Most rapid thiii~iing rates (more tlian 1 m, year) 
were obseived in the lower reaches of east coast 
outlet glaciers. Our results give an average 
tliickening (without coi-recting for vertical 
ci-ustal motion), for elevatio~is above 2000 m, of 
0.5 i 0.7 cm/year for 1993 to 1998, which is 
smaller than the ~iiost recently published aver- 
age tliiclteiling value of 2.2 i 0.9 cmiyear 
bemeen 1978 and 1988 estimated froin satellite 
radar-altimeter data for the same region (1). 
However. neither of the ei-ror estimates i~icludes 
eisors associated with iiiteipolating between 
flight lines, and that for the radar-altimeter data 
includes only the random component of the 
ei-ror (I). Conseque~itly. these higher elevation 
central regions could have been almost exactly 
in balance for tlie past 20 years, or they could be 
shifting froin slight thickening to a balanced 
coildition. 

The lower elevation coastal regions are be- 
having differently. Thickening and thinning 
rates for all surfaces below 2000 in show ex- 
tensive thinning in the east (Fig. 2), consistent 
with observations of warmer tlian noinlal tem- 
peratures for 1993 to 1998. However, we also 
obseived areas of thinning near tlie west coast 
(Fig. 1). where iiiany locatioiis were cooler than 
normal ( 6 )  The elebat~on changes along the 
west and south sides of the Ice sheet (Fig 1) 
show good qualitative agreement ~i i t l i  esti- 

mates of marginal ice advance and retreat be- 
hveen 1950 and 1985 based on comparison of 
aeiial photographs (7). but not along the east 
coast, where the earlier. rather sparse data sug- 
gest glacier advance between 1950 and 1985. 

We observed tlie highest rates of thinning in 
the lower reaches of outlet glaciers along the 
east coast, where we might expect large cliang- 
es caused by i~iterailnual variability in melt 
rates (8). Over tlie 5-year period. total thinning 
of as much as 10 m was obseived in the lower 
reaches of all east coast outlet glaciers that were 
sui-veyed. at latitudes up to 69'N and at surface 
elevations up to 1500 m (Fig. 2). The observed 

1999, will establish baseline data sets, which 
will be extended witli infoimation fro111 
NASA's ICESAT (9). This satellite laser al- 
timeter will be launched in 2001 to measure 
ice-surface elevatio~is in Greenland and Ant- 
arctica at all latitudes up to 86'. 
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The formation of molecular oxygen from water in photosynthesis is catalyzed 
by photosystem II at an active site containing four manganese ions that are 
arranged in di-y-0x0 dimanganese units (where y is a bridging mode). The 
complex [H20(terpy)Mn(0)2Mn(terpy)OH~(N03)3 (terpy is 2,2':6',2"-terpyri- 
dine), which was synthesized and structurally characterized, contains a di-y-0x0 
manganese dimer and catalyzes the conversion of sodium hypochlorite to 
molecular oxygen. Oxygen-I8 isotope labeling showed that water is the source 
of the oxygen atoms in the molecular oxygen evolved, and so this system is a 
functional model for photosynthetic water oxidation. 

The 0,-evolving complex (OEC) in photo- Extended x-ray absorption fine structure 
system I1 (PSII) consists of a tetranuclear Mn studies have show11 that the Mil tetramer is 
cluster associated with Ca2+, C1-, and a re- made up of di-k-0x0 dimeric Mn units (k is 
dox-active tyrosine that can effect the four- a bridging mode) (2). This assignment was 
electron oxidation of water to dioxygen (1). made by a coinparison with structural model 
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